
3

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 3-10, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

CPP-Admin: An Engine and DSL to Automate the
Development of Web CRUD Applications in C++

 Samuel da Silva Feitosa

Federal University of the Southern Border

Chapecó - SC - Brazil

Samuel.feitosa [at] uffs.edu.br

ABSTRACT
A web application is usually developed as a set of simple and

complex concepts. For the simple part, such as the

implementation of CRUD operations, most of the job is

repetitive and can be highly automated. For the complex part,

the full power of the language is desirable for the developers.

A DSL is a language designed specifically to solve problems

in a given domain, aiming to improve quality and bring

productivity for their users. CGI-based web applications are

still in use nowadays, mostly running on devices with a small

amount of resources, to provide easy-to-use configurations.

With all these concepts in mind, this paper presents a DSL to

automate the generation of CRUDs in a CGI-based web

application in C++ and its processing engine, which can be

used to foster application development through the use of

model driven software engineering.

Author Keywords
Domain-specific languages; CRUD generation; Embedded

systems; C++.

1. INTRODUCTION
The area of web programming is evolving constantly. Today,

this area is the first choice for developing new applications,

being essential for several organizations. However, the task

of developing a web application can become complex and

time consuming. A CRUD (acronym for Create, Read,

Update, and Delete) contains the four fundamental

components to manage a web application, where the ̀ `create''

component allows adding new data to the database, the

``read'' is used to retrieve items from the database and present

into a web page, the ``update'' enables the user to edit an

existing item, and the ``delete'' allows the user to remove an

item record from the database [13]. These components are

implemented widely in web applications, providing basic

code and defining how the data is related in an information

system. However, implementing CRUD operations for such

a system is boring, and this task can be highly automated [9].

To approach this problem, automatic generators of CRUDs

emerged, aiming to provide a way to construct such

operations in databases rapidly, reducing considerably the

time and effort spent when developing a web application [1].

Modern and popular frameworks such as Ruby on Rails and

Django provide such tools, with a simple and easy-to-use

interface to model a database and generate web pages

automatically. These tools help the developer to have a web

application with minimal interface and functionality faster

than building it from scratch. However, usually these tools

generate code that is not easy to maintain and also need a

heavy setting of components to work on a web server.

With that in mind, this paper presents a JSON-like DSL to

specify the components and behavior of an application,

automating the generation of CRUDs together with an engine

developed in C++ in a cgi-based setting. For tasks not

covered by the CRUD paradigm, the full power of C++ can

be employed to deal with the web requests, allowing the

developers to focus on more complex and strategic features

for their systems. Besides the benefits of having this

automation, this engine implements a lightweight framework

to develop C++ web applications, which can be employed for

different contexts. It can be specially used in embedded

systems, which usually lack resources to provide a full web

server to run user applications.

The main contributions of this paper are:

● A DSL to specify and automate the processing of

CRUD operations.

● C++ libraries to deal with HTTP requests, different

databases, and generation of code.

● An engine to process the HTTP requests generating

the corresponding code to communicate to the user.

The rest of this paper is organized as follows: Section 2

presents the background concepts for this paper, such as

model-driven engineering, domain-specific languages, and

CRUD applications. Section 3 presents the syntax and

keywords, an example of a CRUD application using the

proposed DSL, and the main components of the framework.

Section 4 explains how the engine processes the language

and some details about its implementation. Section 5 brings

some discussion about the results. Section 6 shows some

related work. And finally, Section 7 concludes the paper.

2. BACKGROUND
In this section, we introduce the main topics covered by this

paper. The model-driven engineering (MDE), which allows

the description of a system through abstract models; the

domain-specific languages (DSL), which can be used

specifically to solve a certain problem; and some extra

information about the architecture of a CRUD application.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

4

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 3-10, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

2.1 Model-driven Engineering

The Object Management Group (OMG) published in 2001

the first version of the model-driven architecture

specification, which emphasized the use of models as

artifacts for software development, giving rise to the model-

driven engineering. More specifically, these models should

be complete in a way that a software could be automatically

derived from them [19].

Model-driven engineering (MDE) is a software development

approach which focuses on the creation of models capturing

the behaviors and requirements of a system. These models

can be specified through a modeling language such as UML

or SysML, or by using a DSL capturing the static and

dynamic aspects of the system being developed [17]. Then,

the models can be used to automatically generate the source-

code, the documentation, or other software artifact.

Although the concept is interesting, there remains a lack of

clarity on whether a general-purpose model is a good

approach to be the core of software development [19].

Sometimes, creating a model requires more knowledge (and

time) than coding software directly. There are cases of

success and failure in industry, which makes it difficult to

evaluate the application of the MDE in practice [19]. Despite

that, the MDE has been shown to be a promising approach

for developing software in several areas, including web

development.

2.2 Domain-specific languages

A Domain-Specific Language (DSL) is a programming

language developed and adapted for solving problems in a

specific area (or domain), i.e., a more abstract language

developed exclusively to tackle a domain of problems [14].

In contrast to General Purpose Languages (GPL) (such as

Java, C, or Python), which are designed to be generic and to

offer support for developing several kinds of applications, a

DSL is developed with an specific

aim~\cite{langlois2007dsl}. For example, a DSL can be

used to query a database, to filter a network packet, to

describe a CRUD, etc.

DSLs are used to simplify the development process, often

making the code easy to read and to maintain. They usually

offer some benefits, such as productivity, lower learning

curve, less errors, etc [8]. It is common to have a DSL based

on a model, where the language is able to describe data and

operations. In the context of MDE, a DSL is a specialized

language which uses a transformation (or generation)

function, aiming to abstract the software and facilitate the

development [14]. Features like the discussed earlier are

specially important for this paper, since we aim to facilitate

the development of web applications by using a DSL that

specifies the data and behavior for common operations.

1 We are calling it a JSON-like DSL because we are not using the full power

of JSON [2], relying on a key-paired list of possibly nested strings.

2.3 CRUD Applications

CRUD is a well-known acronym in web development which

means “Create, Read, Update and Delete”. It is a broadly

used approach to perform basic operations when integrating

databases and information systems. It consists of an essential

part of the development of software, being used in several

domains, including finances, health, sales, management,

among others [18].

As mentioned, there are four operations in a CRUD. The

“Create” operation refers to creating or inserting new

registers in a database. The “Read” operation is used to

retrieve data already inserted. It can be used to retrieve all

data of a given entity, or to obtain information from a single

register. The “Update” operation is used to modify a given

register in a database system. And the “Delete'” operation is

used to remove a given register from the database [9]. All

operations together form the basis of a CRUD which is used

in a similar form in several systems with different databases

and programming languages. The approach is so common

that some popular frameworks (such as Ruby on Rails and

Django) have built-in support for creating CRUDs, providing

easy and fast implementation of these operations.

3. A DSL TO GENERATE CRUD APPLICATIONS

This section presents the JSON-like1 DSL used to describe

the data and behavior of a web application, which is stored

in a configuration file for a CRUD. A web application in the

proposed framework is composed of several CRUD

configuration files, which are used as input to the engine to

be interpreted and to generate the HTML code for the

frontend side.

Next we explain the syntax, the reserved keywords, and

some predefined web components, which are used in a

configuration file to define the CRUD options, and can be

expanded to serve different domains.

3.1 Syntax and Keywords

A configuration file defines a CRUD using a JSON-like

format, i.e., a key-pair setting of values for describing the

data and behavior for a Graphical User Interface (GUI) of a

given entity with possible relationships. Here we explain

how the document should look like and how each keyword

is interpreted by the engine. A syntactically valid key-pair

configuration can be seen next.

label="Corporate Client Registration"

Some keywords expect a list of values to be interpreted. The

list of values is just a regular string separated by commas, as

we can see next.

mandatory="descr,realname,document"

5

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 3-10, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

And some keywords are nested with their specific

information. For example,

id.label="ID"

id.fieldtype="text"

shows specific information (label and fieldtype) linked

directly to an id keyword.

The configuration file to specify a CRUD application can be

divided in some parts: (1) general keywords; (2) form fields

and table options; and (3) specific information for form

fields. We describe each valid keyword in the next

subsections.

3.1.1 General keywords

The syntax has keywords which are general for the whole

CRUD application and are shared by different CRUD

operations. We show next a list of the valid keywords.

● label: A label to be shown on the title of the web

page.

● info (optional): A description about the entity or the

CRUD itself.

● options: A possibly empty list with CRUD options

(create, search, etc.).

● dbtable: The main database table to be managed.

● prefix (optional): An optional prefix for each

database table.

● orderfields (optional): An optional list of column

names to order the result set.

The presented keywords are shared by the CRUD operations,

and are used for configuring title, additional screen

description, whether the CRUD allows creating and/or

searching for information, which database table is linked,

etc.

3.1.2 Form fields and table options

These configurations are used to manage the CRUD

operations, and how they should relate to the database. The

valid keywords are listed next.

● datafields: Defines which column names should be

retrieved from the database.

● formfields: Describes the fields that should be

collected from the user by a web form and sent to

the server to be saved on the database.

● tablefields: Expects the column names to be shown

on the listing page.

● tableoptions: Defines which options should be

allowed for each register (show, edit, delete).

● tableoffset: The offset to be used on the pagination.

● mandatory (optional): Defines which fields are

mandatory for validation.

The keywords presented in this subsection are used

specifically for some CRUD operations. For example, the

formfields keyword is used on the “Create” and “Update”

operations of a CRUD, since they are responsible to render

and collect information from the user, which should be saved

on the database on the server side. The datafields, tablefields,

and tableoffset keywords are used on the “Read” operation

of a CRUD, being responsible to define what should be

retrieved from the database and shown to the user on a listing

page. And, finally, the tableoptions keyword is used for both

the “Update” and “Delete” CRUD operations, since they are

responsible to allow the user to proceed with these actions.

3.1.3 Specific information for form fields

Each form field should be described in more detail, since

they can define the field type, whether it is related to another

database table (foreign key), and some extra personalization

on the user interface (label, icon, etc.). For that, there are still

some keywords, which should be nested on the form field

item.

● label: The label to be shown on the form for a given

field.

● fieldtype: The description of a type for a given field.

We offer a set of predefined visual components for

field types, both for simple types (Text, TextArea,

Select, Radio, etc.) and composite types

(InputToList, Se-lectToList, ListToList, etc.).

● icon (optional): An optional icon to be shown next

to the field on the form.

● relation (optional): Used when the field represents

a relation with another table (one to one, one to

many, or many to one).

● multirelation (optional): Used when the field repre-

sents a many to many relation between two tables.

● reltable (optional): Allows the user to inform the

name of a join table for a many to many

relationship.

With the presented keywords, the engine is able to link the

form fields with the database fields, proceed with

validations, and render the HTML/CSS for the browser. As

we could note, the DSL allows the user to manage different

kinds of relationships between entities, including one to one,

one to many, many to one, and many to many, and the engine

is capable of interpreting and generating the code

automatically by using the configurations.

3.2 CRUD configuration example

This section shows an example of a CRUD configuration

file, which is used to manage information on an information

system for selling software licenses. We present the

configuration file named price.conf divided in three parts,

showing the results on the generated screen together with

each part to make the explanation easier.

The first part describes the general CRUD information, with

a label, options, and the database table responsible to store

the data.

6

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 3-10, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

General CRUD information

label="Price Table Registration" info="The prices

for each app license." options="create"

dbtable="software_license"

prefix="swm" orderfields="id"

This piece of code is responsible for rendering the upper part

of the user interface, and to keep basic information for the

CRUD application. Figure 1 shows the results of processing

the code.

Figure 1: Rendered user interface for the first piece of code.

Next, we show the form fields and table options information,

that is responsible for describing which data should be

retrieved from the database, the fields that should be shown

and collected on the generated form, and the columns that

should appear on the listing table.

Form fields and table options information

datafields="id,descr,price"

formfields="descr,software,license,price"

tablefields="software,license,price" tableoptions="edit,delete"

tableoffset="10"

mandatory="price"

The table rendered through the specification on the presented

piece of code can be seen in Figure 2. The reader can note

that the generated code is showing the buttons “Edit” and

“Delete” as expected.

Figure 2: Rendered user interface for the second piece of code.

The last part of the configuration file contains specific

information about the form fields.

Form fields information

id.label="ID"

descr.label="Product Description"

descr.fieldtype="text"

descr.icon="glyphicon-pencil"

software.label="Application"

software.fieldtype="SelectList"

software.relation="software"

license.label="License Type"

license.fieldtype="SelectList"

license.relation="license"

price.label="Price"

price.fieldtype="text"

price.icon="glyphicon-pencil"

Here we can note that, for each form field, we have a

fieldtype (except for the id, which is created as a hidden field

by omission). Also, the fields descr and price have icons to

be shown, and the fields software and license have additional

information about the relation with another table. For

example, one can note that the field software is related to the

database table software, and the license field is related to the

database table license. Figure 3 shows the form rendered

accordingly to its configuration.

Figure 3: Rendered user interface for the last piece of code.

The reader can note that the software and license fields are

related to other tables, and that they use a “SelectList” field

type. This is a special component which allows one to select

one register coming from a related table. In our framework,

we have several predefined components that can be used for

simple and for composite types.

Although we offer some visual components to be used, the

proposed lightweight framework is developed to be

extensible, since the user/programmer itself can create new

field type components using our template language to

integrate with the server-side processor. In the next sections

7

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 3-10, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

we will explain in detail how the server and client-side

communicate, and how we can extend them.

3.3 Server-side Components

The DSL described in the previous subsections relies on

several components on the server-side, which together allow

a user to generate a CRUD application using a no-code

approach. These components include libraries to integrate

with different databases, profiling rules to improve

application security, and the processing itself of the actions

performed by the user.

3.3.1 Database Integration

This component is responsible for handling the business

information managed by the system. We provide, on this first

version, drivers for the databases PostgreSQL2 and SQLite3,

and a factory pattern allowing a programmer to extend the

support for new database drivers.

3.3.2 Users and Groups

With this component we provide access control mechanisms

for system security. A user can be part of zero or more

groups, and the permissions can be set both to users or

groups. These permissions grant or remove access to the

application's CRUD operations for each user. Obviously, this

module is only useful together with an authentication

mechanism.

3.3.3 Menus and Options

To be able to access the CRUDs for each entity, any

application needs to provide a main menu with links to them.

We provide an extra JSON-like configuration file for the

admin page, which allows one to list all the links of the

application. As we mentioned, the proposed approach is to

automate the CRUD operations for each entity, and the

complex business rules should be implemented using the full

power of the C++ language. Considering this, the admin page

is able to link both the generated CRUDs and the custom

made CGI programs.

3.4 Client-side Components

The frontend of the CRUD is also automatically generated,

and it uses some components to proceed with the user

interface generation. Predefined tables, forms, and fields are

filled by the engine, and the actions trigger the processing for

showing information to the user, or to create, update or delete

registers. Also, to provide a no-code experience for the user,

we have a set of useful visual components to be used on the

forms.

3.4.1 Tables, Forms, Fields and Actions

Tables and Forms are used to manage data, having a close

relationship with the database model. This component

generates all user interfaces automatically and is responsible

to process the requests and manage the database by retrieving

2 https://www.postgresql.org

and saving data. As usual, the CRUD operations are

performed when the user requests such actions through

buttons or links.

3.4.2 Visual Components

We provide the most used visual components for a CRUD.

They are divided into two categories: (1) the components to

individual database columns, such as Text, TextArea,

Password, Date, Time, etc.; and (2) the components which

can be related to another table through a foreign key, such as

CheckBoxList, RadioList, InputToList, SelectList,

ListToList, etc. These components are available as regular

HTML files with template variables, which are filled by the

processing mechanism. As already mentioned, these form

template fields can be extended according to the user needs.

4. ENGINE ARCHITECTURE

The DSL presented in the previous section is responsible for

describing how a CRUD application should work. From the

language perspective, the engine can be seen as an

interpreter, which parses the CRUD configuration files,

performs validation and outputs HTML code as response.

However, a software to generate CRUDs automatically

needs to perform other activities.

Thus, the problem tackled by the engine can be divided in

four general steps: managing HTTP requests, interpreting the

proposed DSL, providing access to databases, and rendering

HTML/CSS/Javascript to be shown by the browser. That

way, the engine is responsible for working with both the

backend and the frontend. The engine implements the

architecture shown in Figure \ref{fig:arch}.

Figure 4: The engine architecture.

As we can see, the engine work starts by receiving a HTTP

request, which contains the usual HTTP readers and the

parameters, which can come via GET, POST, PUT, etc. To

deal with that, we have the Input Request Layer which parses

the HTTP packet and fills an object of the class

HTTPRequest we developed. In our implementation, the

CRUD operations only use GET and POST requests, where

GET parameters are used mostly to control the route and the

3 https://www.sqlite.org

https://www.postgresql.org/
https://www.sqlite.org/

8

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 3-10, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

register ids, while the POST parameters are used to pass form

data.

Knowing which route should be generated, the code written

using the DSL describing the CRUD operations is loaded

and validated, preparing all the internal structures for the

generation process. To process this step, we implemented

classes to deal with profiling, menus, items, registers, forms,

tables, etc. These classes are multipurpose, since each of

them parse specific source code of the DSL and also output

the results to the user.

Linked to the previous step, we have the Data Access Layer,

which provides a common interface to access the data stored

on the database. We used the object-oriented design pattern

Factory to make it easily extensible for other database

drivers. As mentioned, in the current version, we provide

common access methods for both the postgres and sqlite

databases.

The last step lives on the Output Render Layer, which is

responsible for generating the actual HTML/CSS/Javascript

code to interact with the user by means of a web server. It

also invokes the actions requested by end-users (insert,

delete, update on the database). The render is responsible for

filling the visual components template with data, which will

automatically generate tables, forms, fields, buttons, etc. It

means that the user of the DSL does not need to care about

this process, since it is performed automatically.

It is important to remember that the engine is implemented

in C++, with a minimal use of external libraries and

resources. That way we could keep the executable small

enough to run them in low performance hardware, such as

embedded systems.

4.1 Source Code

All the source-code for the proposed framework was

compiled and tested with gcc/g++ version 11 using a Linux

machine running Ubuntu 24.04.1 LTS. We avoided showing

C++ code to not distract the reader from understanding the

high-level structure of the DSL. The curious reader can

access the source code of this project together with

instructions to run an example application on our github

repository4.

5. DISCUSSION

Code generators, no-code programming, and CRUD

generators have gained attention in the last years and have

been increasingly used in the software development industry

to accelerate the development of applications [4, 3].

Although those approaches have some differences, they all

share the common goal of simplifying the development

process.

Code generators are programs used to create code

automatically by following a set of requirements or

4 https://github.com/sfeitosa/cpp-crud-gen-dsl

specifications provided by a developer [6]. Usually, they are

used to automate the creation of applications with some

general format or structure, such as CRUD web applications.

By using such generators, developers can save time and

avoid common mistakes. On the other hand, no-code

programming is an approach to allow end-users to develop

their own application without coding. The platforms of no-

code usually offer a GUI which allows the user to create

forms, listings, and other features without the need to

understand a complete programming language [3]. This

approach is useful for people without a background in

programming, allowing them to create software focused on

the business they know.

The result of this paper tries to merge both approaches, by

offering an easy-to-understand DSL, using the style of

configuration files, to allow an user to describe the common

operations of a web application. We believe that a person

without a background in programming can be able to create

CRUD applications using the presented framework. Another

important aspect is the way the engine works. Differently

from code generators, the engine is an interpreter of the

configuration files, which accelerates the process of

development and test of the system, since it is not necessary

to recompile the application for each new CRUD that is

added.

Furthermore, we developed the engine to be a lightweight

framework, taking into account embedded systems, which

usually have to provide some web user interface for the users

to configure basic parameters. The idea is to allow the

embedded developers to focus on their area of expertise and

offer a tool to generate the repetitive tasks of CRUD

operations even for such low resourced devices. It is

becoming even more important nowadays with the

increasing number of IoT devices and industrial controllers.

6. RELATED WORK

In this section we present some related work on the automatic

generation of CRUDs by using model-driven engineering or

domain-specific languages.

Gomez et al. [9] describe in their paper a domain-specific

language called CRUDyLeaf, which is used to generate

RESTful APIs using the Spring Boot framework. This DSL

allows developers to specify through a configuration file the

CRUD operations they want to provide as a RESTful API.

Then, from the configuration file, the CRUDyLeaf generator

exports Java code automatically, including all the necessary

models, controllers, and other classes to be consumed online.

The authors discuss that their DSL can save time and effort

from developers by generating complete RESTful APIs from

a configuration file, without the need to code all the Java

code necessary. This paper differs from ours because it only

generates the backend part of the software, and is encoded in

Java, where our DSL is used to generate both, the backend

https://github.com/sfeitosa/cpp-crud-gen-dsl

9

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 3-10, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

and the frontend for a CRUD application using the C++

language. Also, we provide an engine that interprets our DSL

instead of generating regular language files which have to be

later compiled.

Livraghi [12] presents a system to generate CRUD

applications automatically. The system uses a model-driven

approach, which uses metadata to generate a complete

application, including the backend and frontend part. The

metadata can be a Java class, a XMI model, or a database

schema. The author provides a tool which receives the

metadata as input and generates the necessary code to run a

RESTful API in Java, and an Angular script to provide the

UI and to consume de generated API. The author states that

the solution reduced drastically the development time,

reducing costs for when developing an application. The

approach proposed by the author is very complete, but it

differs from ours in the sense that it generates Java code

using Spring, which usually is not appropriate for devices

with few resources, while our paper describes a lightweight

engine that works with C++ and can run in such

environments.

The work of Rodriguez-Echeverria et al. [16] proposes an

approach to generate CRUDs using an Interaction Flow

Modeling Language (IFML) developed as an Eclipse Plug-

in in the Java language. The paper uses existing IFML

models, and detects data entities, which are used to derive

CRUD operations, and then generates the respective code for

this purpose. The authors evaluate their approach in a joint

effort by academia and industry to assess its validity in a real

scenario, showing that it is effective to generate CRUDs

from IFML models, reducing the time necessary to develop

such tasks, and avoiding common errors. The difference

from our work is that it is focused on scalable applications,

which requires processing power from the server, while ours

is implemented considering systems with low resources in

mind.

There are still a bunch of papers describing different

techniques and approaches to generating CRUD applications

[15, 10, 7, 5]. Additionally, some frameworks such as Ruby

on Rails5, Django-Admin6, among others, also provide some

tools to automate the task of generating CRUDs. Since they

are complete frameworks for web development, the

automation of CRUDs is indicated for simple application

configuration user interfaces, where the CRUDs for the real

information system is usually written directly on the

framework. Again, the essential difference from our work is

that we focus on generating complete CRUDs (backend and

frontend) in a setting that does not require many resources.

7. CONCLUSION

This paper described a JSON-like language to automate the

process of encoding CRUDs in web applications, together

5 https://rubyonrails.org/

with a lightweight engine developed in C++ to interpret the

DSL, and responsible for generating both the backend and

frontend, aiming to accelerate the development of software,

especially for low resourced hardware, such as for embedded

systems. With a tool like the one presented here, the

developer can automate the repetitive tasks and focus on

other important parts of the project. In such scenarios, the

CRUDs are fully automated, and for specific parts of the

system, the user can use the full power of the C++ language.

As future work, we can expand the generator to embed a

whole lightweight web server, similarly to Spring, Node and

others, to be able to run directly on small devices. Another

possibility is to separate the client and server-side using

REST principles and modern libraries, which would improve

the quality of the generated code. We could also add new

predefined components to serve for different application

domains. One adaptation of the language could be made to

allow the engine to generate and manage the database

schema. Furthermore, the DSL itself could be improved by

using JSON objects to describe the nested structures of the

syntax. The authors believe that the results of this paper can

be transformed into an open-source project as a framework

for developing web applications in the domain of embedded

systems.

8. REFERENCES

[1] A. W. Anuar, N. Kama, A. Azmi, H. M. Rusli, and Y.

Yahya. Re-crud code automation framework evaluation

using desmet feature analysis. International Journal of

Advanced Computer Science and Applications, 13(5),

2022.

[2] L. Bassett. Introduction to JavaScript object notation: a

to-the-point guide to JSON. ” O’Reilly Media, Inc.”,

2015.

[3] T. Beranic, P. Rek, and M. Heriˇcko. Adoption and

usability of low-code/no-code development tools. In

Central European Conference on Information and

Intelligent Systems, pages 97–103. Faculty of

Organization and Informatics Varazdin, 2020.

[4] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O.

Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G.

Brockman, et al. Evaluating large language models

trained on code. arXiv preprint arXiv:2107.03374,

2021.

[5] A. Delgado, A. Estepa, and R. Estepa. Waine-

automatic generator of web based applications. In

International Conference on Web Information Systems

and Technologies, volume 2, pages 226–233.

SCITEPRESS, 2007.

6 https://www.djangoproject.com/

https://rubyonrails.org/
https://www.djangoproject.com/

10

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 3-10, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

[6] S. E. V. and P. Samuel. Automatic code generation

from uml state chart diagrams. IEEE Access, 7:8591–

8608, 2019.

[7] H. Ed-Douibi, J. L. C. Izquierdo, A. Gómez, M. Tisi,

and J. Cabot. Emf-rest: generation of restful apis from

models. In Proceedings of the 31st Annual ACM

Symposium on Applied Computing, pages 1446–1453,

12016.

[8] M. Fowler. Domain Specific Languages. Addison-

Wesley Professional, 1st edition, 2010.

[9] O. S. Gómez, R. H. Rosero, and K. Cortés-Verdı́n.

Crudyleaf: A dsl for generating spring boot rest apis

from entity crud operations. Cybern. Inf. Technol.,

20(3):3–14, sep 2020.

[10] T. Karungu, L. Nderu, and D. Kaburu. An enhanced

automatic generation of crud operations in react-js.

2022.

[11] B. Langlois, C.-E. Jitia, and E. Jouenne. Dsl

classification. In OOPSLA 7th workshop on domain

specific modeling, 2007.

[12] M. Livraghi. Automatic generation of web crud

applications. 2016.

[13] P. McFedries. Web Coding & Development All-in-One

For Dummies. John Wiley & Sons, 2018.

[14] M. Mernik, J. Heering, and A. M. Sloane. When and

how to develop domain-specific languages. ACM

computing surveys (CSUR), 37(4):316–344, 2005.

[15] O. M. Pereira, R. L. Aguiar, and M. Y. Santos. Crud-

dom: a model for bridging the gap between the object-

oriented and the relational paradigms. In 2010 Fifth

International Conference on Software Engineering

Advances, pages 114–122. IEEE, 2010.

[16] R. Rodriguez-Echeverria, J. C. Preciado, J. Sierra, J.

M. Conejero, and F. Sanchez-Figueroa. Autocrud:

Automatic generation of crud specifications in

interaction flow modelling language. Science of

Computer Programming, 168:165–168, 2018.

[17] D. C. Schmidt et al. Model-driven engineering.

Computer-IEEE Computer Society-, 39(2):25, 2006.

[18] C.-O. Truica, F. Radulescu, A. Boicea, and I. Bucur.

Performance evaluation for crud operations in

asynchronously replicated document oriented database.

In 2015 20th International Conference on Control

Systems and Computer Science, pages 191–196, 2015.

[19] J. Whittle, J. Hutchinson, and M. Rouncefield. The

state of practice in model-driven engineering. IEEE

software, 31(3):79–85, 2013.

