CPP-Admin: An Engine and DSL to Automate the
Development of Web CRUD Applications in C++

Samuel da Silva Feitosa
Federal University of the Southern Border
Chapeco6 - SC - Brazil
Samuel.feitosa [at] uffs.edu.br

ABSTRACT

A web application is usually developed as a set of simple and
complex concepts. For the simple part, such as the
implementation of CRUD operations, most of the job is
repetitive and can be highly automated. For the complex part,
the full power of the language is desirable for the developers.
A DSL is a language designed specifically to solve problems
in a given domain, aiming to improve quality and bring
productivity for their users. CGI-based web applications are
still in use nowadays, mostly running on devices with a small
amount of resources, to provide easy-to-use configurations.
With all these concepts in mind, this paper presents a DSL to
automate the generation of CRUDs in a CGI-based web
application in C++ and its processing engine, which can be
used to foster application development through the use of
model driven software engineering.

Author Keywords
Domain-specific languages; CRUD generation; Embedded
systems; C++.

1. INTRODUCTION

The area of web programming is evolving constantly. Today,
this area is the first choice for developing new applications,
being essential for several organizations. However, the task
of developing a web application can become complex and
time consuming. A CRUD (acronym for Create, Read,
Update, and Delete) contains the four fundamental
components to manage a web application, where the " "create"
component allows adding new data to the database, the
““read" is used to retrieve items from the database and present
into a web page, the ‘update" enables the user to edit an
existing item, and the *"delete" allows the user to remove an
item record from the database [13]. These components are
implemented widely in web applications, providing basic
code and defining how the data is related in an information
system. However, implementing CRUD operations for such
a system is boring, and this task can be highly automated [9].

To approach this problem, automatic generators of CRUDs
emerged, aiming to provide a way to construct such
operations in databases rapidly, reducing considerably the
time and effort spent when developing a web application [1].
Modern and popular frameworks such as Ruby on Rails and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Django provide such tools, with a simple and easy-to-use
interface to model a database and generate web pages
automatically. These tools help the developer to have a web
application with minimal interface and functionality faster
than building it from scratch. However, usually these tools
generate code that is not easy to maintain and also need a
heavy setting of components to work on a web server.

With that in mind, this paper presents a JSON-like DSL to
specify the components and behavior of an application,
automating the generation of CRUDs together with an engine
developed in C++ in a cgi-based setting. For tasks not
covered by the CRUD paradigm, the full power of C++ can
be employed to deal with the web requests, allowing the
developers to focus on more complex and strategic features
for their systems. Besides the benefits of having this
automation, this engine implements a lightweight framework
to develop C++ web applications, which can be employed for
different contexts. It can be specially used in embedded
systems, which usually lack resources to provide a full web
server to run user applications.

The main contributions of this paper are:

e A DSL to specify and automate the processing of
CRUD operations.

e (C++ libraries to deal with HTTP requests, different
databases, and generation of code.

e An engine to process the HTTP requests generating
the corresponding code to communicate to the user.

The rest of this paper is organized as follows: Section 2
presents the background concepts for this paper, such as
model-driven engineering, domain-specific languages, and
CRUD applications. Section 3 presents the syntax and
keywords, an example of a CRUD application using the
proposed DSL, and the main components of the framework.
Section 4 explains how the engine processes the language
and some details about its implementation. Section 5 brings
some discussion about the results. Section 6 shows some
related work. And finally, Section 7 concludes the paper.

2. BACKGROUND

In this section, we introduce the main topics covered by this
paper. The model-driven engineering (MDE), which allows
the description of a system through abstract models; the
domain-specific languages (DSL), which can be used
specifically to solve a certain problem; and some extra
information about the architecture of a CRUD application.

3

Revista de Sistemas e Computagdo, Salvador, v. 15, n. 3, p. 3-10, set/dez 2025
https://revistarsc.com.br/ojs/index.php/rsc

2.1 Model-driven Engineering

The Object Management Group (OMG) published in 2001
the first version of the model-driven architecture
specification, which emphasized the use of models as
artifacts for software development, giving rise to the model-
driven engineering. More specifically, these models should
be complete in a way that a software could be automatically
derived from them [19].

Model-driven engineering (MDE) is a software development
approach which focuses on the creation of models capturing
the behaviors and requirements of a system. These models
can be specified through a modeling language such as UML
or SysML, or by using a DSL capturing the static and
dynamic aspects of the system being developed [17]. Then,
the models can be used to automatically generate the source-
code, the documentation, or other software artifact.

Although the concept is interesting, there remains a lack of
clarity on whether a general-purpose model is a good
approach to be the core of software development [19].
Sometimes, creating a model requires more knowledge (and
time) than coding software directly. There are cases of
success and failure in industry, which makes it difficult to
evaluate the application of the MDE in practice [19]. Despite
that, the MDE has been shown to be a promising approach
for developing software in several areas, including web
development.

2.2 Domain-specific languages

A Domain-Specific Language (DSL) is a programming
language developed and adapted for solving problems in a
specific area (or domain), i.e., a more abstract language
developed exclusively to tackle a domain of problems [14].
In contrast to General Purpose Languages (GPL) (such as
Java, C, or Python), which are designed to be generic and to
offer support for developing several kinds of applications, a
DSL is developed with an specific
aim~\cite{langlois2007dsl}. For example, a DSL can be
used to query a database, to filter a network packet, to
describe a CRUD, etc.

DSLs are used to simplify the development process, often
making the code easy to read and to maintain. They usually
offer some benefits, such as productivity, lower learning
curve, less errors, etc [8]. It is common to have a DSL based
on a model, where the language is able to describe data and
operations. In the context of MDE, a DSL is a specialized
language which uses a transformation (or generation)
function, aiming to abstract the software and facilitate the
development [14]. Features like the discussed earlier are
specially important for this paper, since we aim to facilitate
the development of web applications by using a DSL that
specifies the data and behavior for common operations.

' We are calling it a JSON-like DSL because we are not using the full power
of JSON [2], relying on a key-paired list of possibly nested strings.

2.3 CRUD Applications

CRUD is a well-known acronym in web development which
means “Create, Read, Update and Delete”. It is a broadly
used approach to perform basic operations when integrating
databases and information systems. It consists of an essential
part of the development of software, being used in several
domains, including finances, health, sales, management,
among others [18].

As mentioned, there are four operations in a CRUD. The
“Create” operation refers to creating or inserting new
registers in a database. The “Read” operation is used to
retrieve data already inserted. It can be used to retrieve all
data of a given entity, or to obtain information from a single
register. The “Update” operation is used to modify a given
register in a database system. And the “Delete” operation is
used to remove a given register from the database [9]. All
operations together form the basis of a CRUD which is used
in a similar form in several systems with different databases
and programming languages. The approach is so common
that some popular frameworks (such as Ruby on Rails and
Django) have built-in support for creating CRUDs, providing
easy and fast implementation of these operations.

3. ADSL TO GENERATE CRUD APPLICATIONS

This section presents the JSON-like! DSL used to describe
the data and behavior of a web application, which is stored
in a configuration file for a CRUD. A web application in the
proposed framework is composed of several CRUD
configuration files, which are used as input to the engine to
be interpreted and to generate the HTML code for the
frontend side.

Next we explain the syntax, the reserved keywords, and
some predefined web components, which are used in a
configuration file to define the CRUD options, and can be
expanded to serve different domains.

3.1 Syntax and Keywords

A configuration file defines a CRUD using a JSON-like
format, i.e., a key-pair setting of values for describing the
data and behavior for a Graphical User Interface (GUI) of a
given entity with possible relationships. Here we explain
how the document should look like and how each keyword
is interpreted by the engine. A syntactically valid key-pair
configuration can be seen next.

label="Corporate Client Registration"

Some keywords expect a list of values to be interpreted. The
list of values is just a regular string separated by commas, as
Wwe can see next.

mandatory="descr,realname,document"

Revista de Sistemas e Computagdo, Salvador, v. 15, n. 3, p. 3-10, set/dez 2025
https://revistarsc.com.br/ojs/index.php/rsc

And some keywords are nested with their specific
information. For example,

id.label="ID"
id.fieldtype="text"

shows specific information (label and fieldtype) linked
directly to an id keyword.

The configuration file to specify a CRUD application can be
divided in some parts: (1) general keywords; (2) form fields
and table options; and (3) specific information for form
fields. We describe each valid keyword in the next
subsections.

3.1.1 General keywords

The syntax has keywords which are general for the whole
CRUD application and are shared by different CRUD
operations. We show next a list of the valid keywords.

e Jabel: A label to be shown on the title of the web
page.

e info (optional): A description about the entity or the
CRUD itself.

e options: A possibly empty list with CRUD options
(create, search, etc.).

® (dbtable: The main database table to be managed.

e prefix (optional): An optional prefix for each
database table.

e orderfields (optional): An optional list of column
names to order the result set.

The presented keywords are shared by the CRUD operations,
and are used for configuring title, additional screen
description, whether the CRUD allows creating and/or
searching for information, which database table is linked,
etc.

3.1.2 Form fields and table options

These configurations are used to manage the CRUD
operations, and how they should relate to the database. The
valid keywords are listed next.

® datafields: Defines which column names should be
retrieved from the database.

e formfields: Describes the fields that should be
collected from the user by a web form and sent to
the server to be saved on the database.

e tablefields: Expects the column names to be shown
on the listing page.

® tableoptions: Defines which options should be
allowed for each register (show, edit, delete).

e tableoffset: The offset to be used on the pagination.

e mandatory (optional): Defines which fields are
mandatory for validation.

The keywords presented in this subsection are used
specifically for some CRUD operations. For example, the
Jformfields keyword is used on the “Create” and “Update”

operations of a CRUD, since they are responsible to render
and collect information from the user, which should be saved
on the database on the server side. The datafields, tablefields,
and tableoffset keywords are used on the “Read” operation
of a CRUD, being responsible to define what should be
retrieved from the database and shown to the user on a listing
page. And, finally, the tableoptions keyword is used for both
the “Update” and “Delete” CRUD operations, since they are
responsible to allow the user to proceed with these actions.

3.1.3 Specific information for form fields

Each form field should be described in more detail, since
they can define the field type, whether it is related to another
database table (foreign key), and some extra personalization
on the user interface (label, icon, etc.). For that, there are still
some keywords, which should be nested on the form field
1tem.

e Jabel: The label to be shown on the form for a given
field.

e fieldtype: The description of a type for a given field.
We offer a set of predefined visual components for
field types, both for simple types (Text, TextArea,
Select, Radio, etc.) and composite types
(InputToList, Se-lectToList, ListToList, etc.).

e icon (optional): An optional icon to be shown next
to the field on the form.

e relation (optional): Used when the field represents
a relation with another table (one to one, one to
many, or many to one).

e multirelation (optional): Used when the field repre-
sents a many to many relation between two tables.

e reltable (optional): Allows the user to inform the
name of a join table for a many to many
relationship.

With the presented keywords, the engine is able to link the
form fields with the database fields, proceed with
validations, and render the HTML/CSS for the browser. As
we could note, the DSL allows the user to manage different
kinds of relationships between entities, including one to one,
one to many, many to one, and many to many, and the engine
is capable of interpreting and generating the code
automatically by using the configurations.

3.2 CRUD configuration example

This section shows an example of a CRUD configuration
file, which is used to manage information on an information
system for selling software licenses. We present the
configuration file named price.conf divided in three parts,
showing the results on the generated screen together with
each part to make the explanation easier.

The first part describes the general CRUD information, with
a label, options, and the database table responsible to store
the data.

Revista de Sistemas e Computagdo, Salvador, v. 15, n. 3, p. 3-10, set/dez 2025
https://revistarsc.com.br/ojs/index.php/rsc

General CRUD information

label="Price Table Registration" info="The prices
for each app license." options="create"
dbtable="software license"

)

prefix="swm" orderfields="id"

This piece of code is responsible for rendering the upper part
of the user interface, and to keep basic information for the
CRUD application. Figure 1 shows the results of processing
the code.

Price Table Registration

The prices for each app license.

=+New Register

Figure 1: Rendered user interface for the first piece of code.

Next, we show the form fields and table options information,
that is responsible for describing which data should be
retrieved from the database, the fields that should be shown
and collected on the generated form, and the columns that
should appear on the listing table.

Form fields and table options information
datafields="id,descr,price"
formfields="descr,software,license,price"
tablefields="software,license,price" tableoptions="edit,delete"
tableoffset="10"

mandatory="price"

The table rendered through the specification on the presented
piece of code can be seen in Figure 2. The reader can note
that the generated code is showing the buttons “Edit” and
“Delete” as expected.

Price Table Registration

The prices for each app license.

=+New Register

Application License Type Price Opcoes

Figure 2: Rendered user interface for the second piece of code.

Windows XP Anual

The last part of the configuration file contains specific
information about the form fields.

Form fields information
id.label="ID"

descr.label="Product Description"
descr.fieldtype="text"
descr.icon="glyphicon-pencil"

software.label="Application"
software.fieldtype="SelectList"
software.relation="software"

license.label="License Type"
license.fieldtype="SelectList"
license.relation="license"

price.label="Price"
price.fieldtype="text"
price.icon="glyphicon-pencil"

Here we can note that, for each form field, we have a
fieldtype (except for the id, which is created as a hidden field
by omission). Also, the fields descr and price have icons to
be shown, and the fields software and license have additional
information about the relation with another table. For
example, one can note that the field software is related to the
database table software, and the license field is related to the
database table license. Figure 3 shows the form rendered
accordingly to its configuration.

Price Table Registration

Product Description
’
Application
Windows XP v

License Type

Anual v

Price*

’

Figure 3: Rendered user interface for the last piece of code.

The reader can note that the sofiware and license fields are
related to other tables, and that they use a “SelectList” field
type. This is a special component which allows one to select
one register coming from a related table. In our framework,
we have several predefined components that can be used for
simple and for composite types.

Although we offer some visual components to be used, the
proposed lightweight framework is developed to be
extensible, since the user/programmer itself can create new
field type components using our template language to
integrate with the server-side processor. In the next sections

Revista de Sistemas e Computagao, Salvador, v. 15, n. 3, p. 3-10, set/dez 2025
https://revistarsc.com.br/ojs/index.php/rsc

we will explain in detail how the server and client-side
communicate, and how we can extend them.

3.3 Server-side Components

The DSL described in the previous subsections relies on
several components on the server-side, which together allow
a user to generate a CRUD application using a no-code
approach. These components include libraries to integrate
with different databases, profiling rules to improve
application security, and the processing itself of the actions
performed by the user.

3.3.1 Database Integration

This component is responsible for handling the business
information managed by the system. We provide, on this first
version, drivers for the databases PostgreSQL? and SQLite?,
and a factory pattern allowing a programmer to extend the
support for new database drivers.

3.3.2 Users and Groups

With this component we provide access control mechanisms
for system security. A user can be part of zero or more
groups, and the permissions can be set both to users or
groups. These permissions grant or remove access to the
application's CRUD operations for each user. Obviously, this
module is only useful together with an authentication
mechanism.

3.3.3 Menus and Options

To be able to access the CRUDs for each entity, any
application needs to provide a main menu with links to them.
We provide an extra JSON-like configuration file for the
admin page, which allows one to list all the links of the
application. As we mentioned, the proposed approach is to
automate the CRUD operations for each entity, and the
complex business rules should be implemented using the full
power of the C++ language. Considering this, the admin page
is able to link both the generated CRUDs and the custom
made CGI programs.

3.4 Client-side Components

The frontend of the CRUD is also automatically generated,
and it uses some components to proceed with the user
interface generation. Predefined tables, forms, and fields are
filled by the engine, and the actions trigger the processing for
showing information to the user, or to create, update or delete
registers. Also, to provide a no-code experience for the user,
we have a set of useful visual components to be used on the
forms.

3.4.1 Tables, Forms, Fields and Actions

Tables and Forms are used to manage data, having a close
relationship with the database model. This component
generates all user interfaces automatically and is responsible
to process the requests and manage the database by retrieving

2 hitps://www.postgresql.org

and saving data. As usual, the CRUD operations are
performed when the user requests such actions through
buttons or links.

3.4.2 Visual Components

We provide the most used visual components for a CRUD.
They are divided into two categories: (1) the components to
individual database columns, such as Text, TextArea,
Password, Date, Time, etc.; and (2) the components which
can be related to another table through a foreign key, such as
CheckBoxList, RadioList, InputToList, SelectList,
ListToList, etc. These components are available as regular
HTML files with template variables, which are filled by the
processing mechanism. As already mentioned, these form
template fields can be extended according to the user needs.

4. ENGINE ARCHITECTURE

The DSL presented in the previous section is responsible for
describing how a CRUD application should work. From the
language perspective, the engine can be seen as an
interpreter, which parses the CRUD configuration files,
performs validation and outputs HTML code as response.
However, a software to generate CRUDs automatically
needs to perform other activities.

Thus, the problem tackled by the engine can be divided in
four general steps: managing HTTP requests, interpreting the
proposed DSL, providing access to databases, and rendering
HTML/CSS/Javascript to be shown by the browser. That
way, the engine is responsible for working with both the
backend and the frontend. The engine implements the
architecture shown in Figure \ref{fig:arch}.

CRUD
Configurations

Engine

P il T

Data Access Layer l

1
v -
1| g - I3
| 8 [Menus and Options l [User and Groups] B
' B - o]
1|8 [Visual Components] [Tables and Forms J h= D
| g g
HTTP N E ! 5 HTML
Request ' | 2 =3
1| £ =
| = o]
1

Figure 4: The engine architecture.

As we can see, the engine work starts by receiving a HTTP
request, which contains the usual HTTP readers and the
parameters, which can come via GET, POST, PUT, etc. To
deal with that, we have the Input Request Layer which parses
the HTTP packet and fills an object of the class
HTTPRequest we developed. In our implementation, the
CRUD operations only use GET and POST requests, where
GET parameters are used mostly to control the route and the

3 https://www.sqlite.org

Revista de Sistemas e Computagdo, Salvador, v. 15, n. 3, p. 3-10, set/dez 2025
https://revistarsc.com.br/ojs/index.php/rsc

https://www.postgresql.org/
https://www.sqlite.org/

register ids, while the POST parameters are used to pass form
data.

Knowing which route should be generated, the code written
using the DSL describing the CRUD operations is loaded
and validated, preparing all the internal structures for the
generation process. To process this step, we implemented
classes to deal with profiling, menus, items, registers, forms,
tables, etc. These classes are multipurpose, since each of
them parse specific source code of the DSL and also output
the results to the user.

Linked to the previous step, we have the Data Access Layer,
which provides a common interface to access the data stored
on the database. We used the object-oriented design pattern
Factory to make it easily extensible for other database
drivers. As mentioned, in the current version, we provide
common access methods for both the postgres and sqlite
databases.

The last step lives on the Output Render Layer, which is
responsible for generating the actual HTML/CSS/Javascript
code to interact with the user by means of a web server. It
also invokes the actions requested by end-users (insert,
delete, update on the database). The render is responsible for
filling the visual components template with data, which will
automatically generate tables, forms, fields, buttons, etc. It
means that the user of the DSL does not need to care about
this process, since it is performed automatically.

It is important to remember that the engine is implemented
in C++, with a minimal use of external libraries and
resources. That way we could keep the executable small
enough to run them in low performance hardware, such as
embedded systems.

4.1 Source Code

All the source-code for the proposed framework was
compiled and tested with gcc/g++ version 11 using a Linux
machine running Ubuntu 24.04.1 LTS. We avoided showing
C++ code to not distract the reader from understanding the
high-level structure of the DSL. The curious reader can
access the source code of this project together with
instructions to run an example application on our github
repository®.

5. DISCUSSION

Code generators, no-code programming, and CRUD
generators have gained attention in the last years and have
been increasingly used in the software development industry
to accelerate the development of applications [4, 3].
Although those approaches have some differences, they all
share the common goal of simplifying the development
process.

Code generators are programs used to create code
automatically by following a set of requirements or

4 https://github.com/sfeitosa/cpp-crud-gen-dsl

specifications provided by a developer [6]. Usually, they are
used to automate the creation of applications with some
general format or structure, such as CRUD web applications.
By using such generators, developers can save time and
avoild common mistakes. On the other hand, no-code
programming is an approach to allow end-users to develop
their own application without coding. The platforms of no-
code usually offer a GUI which allows the user to create
forms, listings, and other features without the need to
understand a complete programming language [3]. This
approach is useful for people without a background in
programming, allowing them to create software focused on
the business they know.

The result of this paper tries to merge both approaches, by
offering an easy-to-understand DSL, using the style of
configuration files, to allow an user to describe the common
operations of a web application. We believe that a person
without a background in programming can be able to create
CRUD applications using the presented framework. Another
important aspect is the way the engine works. Differently
from code generators, the engine is an interpreter of the
configuration files, which accelerates the process of
development and test of the system, since it is not necessary
to recompile the application for each new CRUD that is
added.

Furthermore, we developed the engine to be a lightweight
framework, taking into account embedded systems, which
usually have to provide some web user interface for the users
to configure basic parameters. The idea is to allow the
embedded developers to focus on their area of expertise and
offer a tool to generate the repetitive tasks of CRUD
operations even for such low resourced devices. It is
becoming even more important nowadays with the
increasing number of IoT devices and industrial controllers.

6. RELATED WORK

In this section we present some related work on the automatic
generation of CRUDs by using model-driven engineering or
domain-specific languages.

Gomez et al. [9] describe in their paper a domain-specific
language called CRUDyLeaf, which is used to generate
RESTful APIs using the Spring Boot framework. This DSL
allows developers to specify through a configuration file the
CRUD operations they want to provide as a RESTful API.
Then, from the configuration file, the CRUDyLeaf generator
exports Java code automatically, including all the necessary
models, controllers, and other classes to be consumed online.
The authors discuss that their DSL can save time and effort
from developers by generating complete RESTful APIs from
a configuration file, without the need to code all the Java
code necessary. This paper differs from ours because it only
generates the backend part of the software, and is encoded in
Java, where our DSL is used to generate both, the backend

Revista de Sistemas e Computagdo, Salvador, v. 15, n. 3, p. 3-10, set/dez 2025
https://revistarsc.com.br/ojs/index.php/rsc

https://github.com/sfeitosa/cpp-crud-gen-dsl

and the frontend for a CRUD application using the C++
language. Also, we provide an engine that interprets our DSL
instead of generating regular language files which have to be
later compiled.

Livraghi [12] presents a system to generate CRUD
applications automatically. The system uses a model-driven
approach, which uses metadata to generate a complete
application, including the backend and frontend part. The
metadata can be a Java class, a XMI model, or a database
schema. The author provides a tool which receives the
metadata as input and generates the necessary code to run a
RESTful API in Java, and an Angular script to provide the
UI and to consume de generated API. The author states that
the solution reduced drastically the development time,
reducing costs for when developing an application. The
approach proposed by the author is very complete, but it
differs from ours in the sense that it generates Java code
using Spring, which usually is not appropriate for devices
with few resources, while our paper describes a lightweight
engine that works with C++ and can run in such
environments.

The work of Rodriguez-Echeverria et al. [16] proposes an
approach to generate CRUDs using an Interaction Flow
Modeling Language (IFML) developed as an Eclipse Plug-
in in the Java language. The paper uses existing I[FML
models, and detects data entities, which are used to derive
CRUD operations, and then generates the respective code for
this purpose. The authors evaluate their approach in a joint
effort by academia and industry to assess its validity in a real
scenario, showing that it is effective to generate CRUDs
from IFML models, reducing the time necessary to develop
such tasks, and avoiding common errors. The difference
from our work is that it is focused on scalable applications,
which requires processing power from the server, while ours
is implemented considering systems with low resources in
mind.

There are still a bunch of papers describing different
techniques and approaches to generating CRUD applications
[15, 10, 7, 5]. Additionally, some frameworks such as Ruby
on Rails®, Django-Admin®, among others, also provide some
tools to automate the task of generating CRUDs. Since they
are complete frameworks for web development, the
automation of CRUDs is indicated for simple application
configuration user interfaces, where the CRUDs for the real
information system is usually written directly on the
framework. Again, the essential difference from our work is
that we focus on generating complete CRUDs (backend and
frontend) in a setting that does not require many resources.

7. CONCLUSION

This paper described a JSON-like language to automate the
process of encoding CRUDs in web applications, together

5 https://rubyonrails.org/

with a lightweight engine developed in C++ to interpret the
DSL, and responsible for generating both the backend and
frontend, aiming to accelerate the development of software,
especially for low resourced hardware, such as for embedded
systems. With a tool like the one presented here, the
developer can automate the repetitive tasks and focus on
other important parts of the project. In such scenarios, the
CRUDs are fully automated, and for specific parts of the
system, the user can use the full power of the C++ language.

As future work, we can expand the generator to embed a
whole lightweight web server, similarly to Spring, Node and
others, to be able to run directly on small devices. Another
possibility is to separate the client and server-side using
REST principles and modern libraries, which would improve
the quality of the generated code. We could also add new
predefined components to serve for different application
domains. One adaptation of the language could be made to
allow the engine to generate and manage the database
schema. Furthermore, the DSL itself could be improved by
using JSON objects to describe the nested structures of the
syntax. The authors believe that the results of this paper can
be transformed into an open-source project as a framework
for developing web applications in the domain of embedded
systems.

8. REFERENCES

[11 A.W. Anuar, N. Kama, A. Azmi, H. M. Rusli, and Y.
Yahya. Re-crud code automation framework evaluation
using desmet feature analysis. International Journal of
Advanced Computer Science and Applications, 13(5),
2022.

[2] L. Bassett. Introduction to JavaScript object notation: a
to-the-point guide to JSON. ” O’Reilly Media, Inc.”,
2015.

[3] T. Beranic, P. Rek, and M. Heri"cko. Adoption and
usability of low-code/no-code development tools. In
Central European Conference on Information and
Intelligent Systems, pages 97—103. Faculty of
Organization and Informatics Varazdin, 2020.

[4] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O.
Pinto, J. Kaplan, H. Edwards, Y. Burda, N. Joseph, G.
Brockman, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374,
2021.

[5]1 A. Delgado, A. Estepa, and R. Estepa. Waine-
automatic generator of web based applications. In
International Conference on Web Information Systems
and Technologies, volume 2, pages 226-233.
SCITEPRESS, 2007.

6 https://www.djangoproject.com/

Revista de Sistemas e Computagdo, Salvador, v. 15, n. 3, p. 3-10, set/dez 2025
https://revistarsc.com.br/ojs/index.php/rsc

https://rubyonrails.org/
https://www.djangoproject.com/

[6] S.E.V.andP. Samuel. Automatic code generation
from uml state chart diagrams. IEEE Access, 7:8591—
8608, 2019.

[7] H. Ed-Douibi, J. L. C. Izquierdo, A. Gémez, M. Tisi,
and J. Cabot. Emf-rest: generation of restful apis from
models. In Proceedings of the 31st Annual ACM
Symposium on Applied Computing, pages 1446—1453,
12016.

[8] M. Fowler. Domain Specific Languages. Addison-
Wesley Professional, 1st edition, 2010.

[9] O.S. Gdémez, R. H. Rosero, and K. Cortés-Verdin.
Crudyleaf: A dsl for generating spring boot rest apis
from entity crud operations. Cybern. Inf. Technol.,
20(3):3-14, sep 2020.

[10] T. Karungu, L. Nderu, and D. Kaburu. An enhanced
automatic generation of crud operations in react-js.
2022.

[11] B. Langlois, C.-E. Jitia, and E. Jouenne. Dsl
classification. In OOPSLA 7th workshop on domain
specific modeling, 2007.

[12] M. Livraghi. Automatic generation of web crud
applications. 2016.

[13] P. McFedries. Web Coding & Development All-in-One
For Dummies. John Wiley & Sons, 2018.

[14] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
computing surveys (CSUR), 37(4):316-344, 2005.

[15] O. M. Pereira, R. L. Aguiar, and M. Y. Santos. Crud-
dom: a model for bridging the gap between the object-
oriented and the relational paradigms. In 2010 Fifth
International Conference on Software Engineering
Advances, pages 114-122. IEEE, 2010.

[16] R. Rodriguez-Echeverria, J. C. Preciado, J. Sierra, J.
M. Conejero, and F. Sanchez-Figueroa. Autocrud:
Automatic generation of crud specifications in
interaction flow modelling language. Science of
Computer Programming, 168:165-168, 2018.

[17] D. C. Schmidt et al. Model-driven engineering.
Computer-IEEE Computer Society-, 39(2):25, 2006.

[18] C.-O. Truica, F. Radulescu, A. Boicea, and I. Bucur.
Performance evaluation for crud operations in
asynchronously replicated document oriented database.
In 2015 20th International Conference on Control
Systems and Computer Science, pages 191-196, 2015.

[19] J. Whittle, J. Hutchinson, and M. Rouncefield. The
state of practice in model-driven engineering. IEEE
software, 31(3):79-85, 2013.

Revista de Sistemas e Computagdo, Salvador, v. 15, n. 3, p. 3-10, set/dez 2025
https://revistarsc.com.br/ojs/index.php/rsc

10

