Optimizing ETL Applications: A Refactoring and
Containerization Approach

Luan Gustavo Oliveira

Luis Gabriel Costa Lima

Methanias Colago Junior

Santana Ribeiro Universidade Federal de
Universidade Federal de Universidade Federal de Sergipe
Sergipe Sergipe ltabaiana — SE — Brasil

Itabaiana — SE — Brasil

ltabaiana — SE — Brasil

mjrse@hotmail.com

luan2103@academico.ufs.br logxpbr@gmail.com

ABSTRACT

Objective: Apply refactoring and containerization
techniques to the DUCA application, a social control
platform focused on school management in the state of
Sergipe, with emphasis on the ETL (Extract, Trans-
form, Load) functionality. The goal is to improve the
performance, maintainability, and scalability of the
application.

Methodology /approach: The study involved re-
structuring the ETL functionality code to adapt the
system to new formats of flat files, in addition to con-
tainerizing the application using Docker and Docker
Compose. The evaluation was conducted through an
in vivo case study, using metrics such as deployment
time, structural code complexity, data load stability,
and qualitative feedback from the development team.

Originality /relevance: The combination of code
refactoring and containerization applied to a real legacy
system is still scarcely explored in an integrated man-
ner in the literature. This work provides a practical
solution for modernizing ETL processes in public ap-
plications, with direct gains in scalability, standard-
ization, and maintainability.

Main results: After the improvements, there was
a reduction of approximately 99.1% in environment
deployment time, stabilization of ETL routines, a de-
crease in error rates, and better control over execution
time.

Theoretical/methodological contributions: The

study demonstrates how modern software engineering
practices can be applied to legacy systems, present-
ing a replicable methodology for environments that
require high data control and development standard-
ization. It highlights the use of Docker as a central
tool for scalability and environment consistency.

RESUMO

Aplicar técnicas de refatoragdo e conteinerizacdo na

aplicacio DUCA, uma plataforma de controle social
voltada para a gestdo escolar no estado de Sergipe,
com foco na funcionalidade ETL (do inglés, FExtract,
Transform, Load). O objetivo é melhorar o desem-
penho, a manutenibilidade e a escalabilidade da apli-
cacdo. O estudo realizou a reestruturagdo do cédigo
da funcionalidade ETL para adaptar o sistema a novos
formatos de arquivos flat, além da conteinerizacdo da
aplicacdo com Docker e Docker Compose. A avali-
acdo foi conduzida por meio de um estudo de caso
in vivo, com uso de métricas como tempo de implan-
tacdo, complexidade estrutural do cédigo, estabilidade
da carga de dados e avaliagdo qualitativa da equipe
técnica. A combinagdo de refatoracio de cédigo e con-
teinerizagdo aplicada a um sistema legado real ainda
é pouco abordada de forma integrada na literatura.
Este trabalho oferece uma solugéo pratica para a mod-
ernizagdo de processos ETL em aplicagoes publicas,
com ganhos diretos em escalabilidade, padronizagao
e manutencdo. Apds as melhorias, observou-se uma
reducao de aproximadamente 99,1% no tempo de im-
plantagdo do ambiente, estabilizagao das rotinas ETL,
queda nas taxas de erro e melhor controle do tempo de
execugdo. O trabalho demonstra como préticas mod-
ernas de engenharia de software podem ser aplicadas
em sistemas legados, apresentando uma metodologia
replicavel para ambientes que exigem alto controle de
dados e padronizac¢do no desenvolvimento. Destaca-se
0 uso do Docker como ferramenta central para escal-
abilidade e consisténcia de ambientes.

Keywords

ETL, Refactoring, Docker, Containerization, Lar-
avel, Software Engineering

Palavras-Chave
ETL, Refatoragdo, Docker, Conteinerizagdo, Engen-
haria de Software

1. INTRODUCAO

Nos tltimos anos, a crescente complexidade dos sis-
temas de software tem exigido abordagens mais efi-
cientes para o desenvolvimento e manutengao de apli-
cagoes. A refatoragao de cédigo, definida como o pro-
cesso de melhorar a estrutura interna do software sem
modificar seu comportamento externo, é fundamen-
tal para a melhoria continua do software, permitindo
ndo apenas a corre¢do de problemas, mas também a

Revista de Sistemas e Computacdo, Salvador, v. 15, n. 3, p. 70-76, set/dez 2025 70
https://revistarsc.com.br/ojs/index.php/rsc

https://revistarsc.com.br/ojs/index.php/rsc

otimizagdo da estrutura interna do cédigo [EI]

Neste contexto, a conteinerizagdo surge como uma
tecnologia poderosa para padronizar ambientes de de-
senvolvimento, garantindo que as aplicagdes funcionem
de maneira consistente em diferentes ambientes e fa-
cilitando a transigdo entre programadores [4]. Docker,
em particular, tem sido amplamente adotado devido
a sua capacidade de criar contéineres que encapsulam
uma aplicagdo juntamente com suas dependéncias, as-
segurando que o ambiente de execugdo seja idéntico
em qualquer lugar que o contéiner seja implantado.

Com base nessas tecnologias modernas, este tra-
balho propée sua aplicagdo sobre a DUCA, um sis-
tema apresentado por PASSOS et al. (2019), que con-
siste em um aplicativo civil colaborativo voltado para
a melhoria da gestdo educacional. O estudo original
destacou a importancia da confiabilidade dos proces-
sos de manipulacdo de dados no contexto escolar, re-
forgando a necessidade de solugoes eficazes para lidar
com grandes volumes de informacdes. No entanto,
néo foram exploradas abordagens como refatoragdo e
conteinerizacdo, que poderiam otimizar significativa-
mente o desempenho da aplicacdo.

Entretanto, apesar das vantagens oferecidas por es-
sas técnicas, muitos sistemas legados continuam a en-
frentar desafios significativos, como a complexidade
na configuracdo dos ambientes de desenvolvimento e
a dificuldade em manter a integridade e a eficiéncia
dos processos de manipulagdo de dados. A aplicagdo
DUCA, que atua em um contexto onde a gestdo de
dados é essencial, enfrenta desafios relacionados a sua
funcionalidade de ETL (do inglés, Extract, Transform,
Load), que requer alta performance e confiabilidade
[6]. A Figura ﬂ ilustra a interface original da apli-
cacdo DUCA apresentada no estudo, que serviu como
ponto de partida para as melhorias propostas neste
estudo.

Elogios
P
[
e aa
o

Figure 1: Tela inicial da aplicagao

Com base nisso, o objetivo principal deste trabalho
é realizar a refatoracéo e conteinerizagdo da aplicagao
DUCA, com foco na funcionalidade de ETL, utilizando
a tecnologia Docker. A proposta deste estudo é demon-
strar como a aplicagdo dessas técnicas pode resolver
os desafios enfrentados, melhorando o desempenho, a
manutencdo e a escalabilidade da aplicacao.

A seguir, o trabalho esta estruturado em sec¢ées que
abordam a base conceitual, a revisao de trabalhos rela-
cionados, a metodologia aplicada, um estudo de caso
pratico e, por fim, as conclusdes obtidas a partir dos
resultados.

2. BASE CONCEITUAL

A refatoragdo de c6digo é uma pratica fundamen-
tal no desenvolvimento de software, que visa melhorar
a estrutura interna de um sistema sem modificar seu
comportamento externo. Segundo FOWLER (2018),
a refatoragdo é um processo disciplinado, realizado
para aumentar a legibilidade, facilitar a manutencao e
reduzir a propensao a erros no cdédigo. Ao melhorar o
design do software apds o c6digo jé ter sido escrito, a
refatoragdo permite que o sistema continue evoluindo
de maneira sustentdvel, mantendo sua funcionalidade
original enquanto se adapta a novas exigéncias.

No contexto da gestdo de dados, a funcionalidade
de ETL (do inglés, Extract, Transform, Load) desem-
penha um papel crucial. Segundo COLACO JUNIOR
(2004), o processo de ETL envolve a extracdo de da-
dos de diversas fontes operacionais, sua transformagao
para atender aos requisitos de qualidade e formato, e,
finalmente, sua carga em um Data Warehouse, onde
os dados sdo estruturados para facilitar a tomada de
decisbes. A refatoracdo de processos de ETL é partic-
ularmente importante, pois pode melhorar significati-
vamente a eficiéncia e a robustez do sistema de pro-
cessamento de dados, assegurando que as informagoes
sejam manipuladas de maneira integra e precisa.

Para enfrentar os desafios relacionados a configu-
ragdo do ambiente de desenvolvimento, que frequente-
mente incluem a gestdo de componentes como bancos
de dados, PHP, Laravel e Composer, a conteinerizagao
tem se mostrado uma solugdo eficaz. Docker, em par-
ticular, oferece uma tecnologia que encapsula a apli-
cacdo, suas dependéncias e bibliotecas em um tnico
contéiner. Isso garante que a aplicacdo funcione de
maneira consistente, independentemente do ambiente
em que estd sendo executada. Além disso, Docker au-
tomatiza a execucdo e a implantagao de aplicacoes em
contéineres, facilitando a padronizacdo dos ambientes
de desenvolvimento e a colaboracdo entre diferentes
programadores [3].

SCHLEGEL (2019) apresenta um estudo sobre a
contéinerizacdo de pipelines ETL utilizando Docker,
demonstrando como essa tecnologia pode garantir con-
sisténcia e portabilidade nos processos de extracio e
transformacdo de dados. Essa abordagem permite
que os pipelines ETL sejam encapsulados de forma
modular, garantindo que diferentes estagios do pro-
cesso possam ser escalados conforme a necessidade,
reduzindo a dependéncia de configuracdes especificas
de ambiente e tornando a integragdo de novas fontes
de dados mais agil e eficiente.

J4 KULAL (2024) detalha a construgdo de uma
pipeline ETL automatizada usando Docker, Jenkins,
Logstash, Elasticsearch e Kibana, destacando os bene-
ficios da escalabilidade e automagdo. A integragdo
dessas ferramentas possibilita a criacdo de fluxos de

trabalho dindmicos, permitindo monitoramento em tempo

real e otimizagoes continuas no processamento de da-
dos. A utilizacdo de ferramentas como Logstash e
Elasticsearch dentro do contexto ETL demonstra como
a conteinerizacdo pode facilitar a implementacao de
arquiteturas orientadas a eventos, promovendo maior
flexibilidade e robustez ao processo.

Além disso, PAYPRO GLOBAL (2024) discute a
aplicacdo de contéineres Docker e Kubernetes, enfa-

Revista de Sistemas e Computacdo, Salvador, v. 15, n. 3, p. 70-76, set/dez 2025 71
https://revistarsc.com.br/ojs/index.php/rsc

https://revistarsc.com.br/ojs/index.php/rsc

tizando sua importancia na padronizacao e eficiéncia
do desenvolvimento de software. Kubernetes amplia
os beneficios da conteinerizagdo ao permitir a orques-
tracdo automéatica de miltiplos contéineres, garantindo
alta disponibilidade, balanceamento de carga e escal-
abilidade sob demanda. Essa abordagem é essencial
para sistemas que lidam com grandes volumes de da-
dos, como pipelines ETL, garantindo que os servigos
sejam executados de forma distribuida e resiliente.

Dessa forma, a combinacao de refatoragdo de codigo
e conteinerizacdo demonstra-se uma abordagem promis-
sora para a modernizacido e otimizacdo de processos
ETL. A adocéo de tecnologias como Docker e Kuber-
netes permite que sistemas de processamento de da-
dos sejam mais eficientes, escalaveis e resilientes a mu-
dancgas, tornando a manutencdo e evolucao das apli-
cacOes mais previsiveis e acessiveis.

3. TRABALHOS RELACIONADOS

A aplicacdo de técnicas de refatoracdo de codigo e
conteinerizacdo em sistemas complexos, especialmente
em processos de ETL (Extract, Transform, Load), tem
se destacado como um campo promissor de pesquisa.
Apesar do potencial dessas abordagens para otimizar
o desempenho, a escalabilidade e a manutencido de
aplicagoes, a literatura recente ainda é relativamente
limitada em estudos que exploram essas praticas de
forma integrada.

ARUNA e PRADEEP (2020) propuseram melhorias
de desempenho e escalabilidade utilizando tecnologias
de contéineres em computacdo de borda baseada em
IoT. O estudo enfatiza os beneficios da contéineriza-
¢a0, especialmente em termos de flexibilidade e ca-
pacidade de resposta em sistemas distribuidos. No
entanto, ele ndo aborda diretamente a refatoracdo do
codigo subjacente ou a aplicacdo dessas técnicas em
sistemas de ETL.

ARUNA e PRADEEP (2020) discutiram os desafios
de seguranca e as melhores praticas recomendadas para
o uso de contéineres Docker, com foco em ambientes
de nuvem. Embora esse estudo seja essencial para a
compreensdo da seguranga em contéineres, ele nao se
aprofunda na aplicacdo dessas praticas para otimiza-
¢do de sistemas ETL.

KAUR e KAUR (2016) realizaram um estudo pratico
de refatoragdo em uma aplicagdo de biblioteca desen-
volvida em Java, utilizando ferramentas como Eclipse,
JDeodorant e plugins de métricas para detectar “bad
smells” e mensurar os impactos da refatoracdo. As
autoras demonstraram, por meio de indicadores como

Complexidade Ciclomatica de McCabe, LCOM e WMC,

que a refatoracdo ¢ eficaz para reduzir a complexidade
estrutural e melhorar a manutenibilidade do cédigo.
Embora o estudo nédo explore diretamente cenarios en-
volvendo ETL ou conteinerizagao, seus achados cor-
roboram a proposta deste trabalho ao evidenciar os
beneficios mensuraveis da refatoracdo em sistemas ex-
istentes.

Diante disso, o presente trabalho propée uma con-
tribuicdo original ao integrar técnicas de refatoragao
de c6digo e contéinerizacdo com Docker, especifica-
mente para otimizar a funcionalidade de ETL de uma
aplicacdo existente, a DUCA. Diferente dos estudos

mencionados, que abordam os temas de forma isolada
ou em contextos especificos, este trabalho oferece uma
abordagem pratica e integrada, com uma anélise de-
talhada das métricas de desempenho, escalabilidade e
manutengdo, antes e depois das melhorias implemen-
tadas.

4. ESTUDO DE CASO

Esta secdo apresenta a aplicacdo pratica da refa-
toragdo e conteinerizacdo na plataforma DUCA, com
foco na rotina de ETL. A iniciativa buscou solucionar
problemas relacionados & manipulagdo de arquivos com
diferentes estruturas, comprometendo a eficiéncia do
sistema. As secOes subsequentes detalham o objetivo
especifico da avaliagdo empirica, o planejamento das
acoes, as ferramentas e métodos utilizados, bem como
as métricas e os critérios adotados para avaliar os re-
sultados obtidos com a aplicacdo das melhorias imple-
mentadas.

4.1 Definicao do Objetivo

Este estudo tem como objetivo principal melhorar o
desempenho, a manutencéo e a escalabilidade da apli-
cagdo DUCA por meio da refatoracdo do cédigo e da
conteinerizacdo com a utilizagdo de Docker. A refa-
toracdo é necessaria, pois a aplicagdo, em sua forma
atual, ndo consegue processar corretamente os arquivos
flat em diversos formatos, tais como .csv, .json e .xlsx,
fornecidos pelo stakeholder, devido a uma alteracio na
estrutura.

Especificamente, o estudo visa:

e Melhorar o desempenho: a refatoragdo do
c6digo foi iniciada para adaptar a funcionalidade
de ETL a nova estrutura dos arquivos, otimizando
o processamento dos dados. Isso inclui a ree-
scrita das rotinas de extracdo e transformacéo
para que consigam lidar com diferentes formatos
de entrada de forma eficiente, diminuindo o tempo
de execugdo e o consumo de recursos.

e Facilitar a manutencgio: a conteinerizagdo da
aplicagado, utilizando Docker, permitird modu-

larizar o sistema, facilitando o processo de manutencéo.

Dessa forma, serd possivel aplicar corregbes e
atualizagoes relacionadas as mudangas nos ar-
quivos de forma mais 4gil e com menor impacto
no ambiente geral da aplicacdo.

e Aumentar a escalabilidade: o uso de Docker
também permitird que a aplicagdo seja facilmente
escalada, executando miltiplas instancias da fun-
cionalidade de ETL, conforme necessario. Isso
garantird que a aplicagdo possa lidar com vol-
umes maiores de dados e uma diversidade de
estruturas de entrada, sem comprometer o de-
sempenho.

A implementacdo do Docker trard beneficios adi-
cionais, como a consisténcia entre os ambientes de de-
senvolvimento e produgdo, garantindo maior confia-
bilidade no sistema. Além disso, destaca-se que a ne-
cessidade de utilizagdo de arquivos .csv estd atrelada
a uma restricdo tecnolégica imposta pelo fornecedor
dos dados. Espera-se que, ao final deste trabalho, a

Revista de Sistemas e Computacdo, Salvador, v. 15, n. 3, p. 70-76, set/dez 2025 72
https://revistarsc.com.br/ojs/index.php/rsc

https://revistarsc.com.br/ojs/index.php/rsc

aplicacdo DUCA esteja preparada para lidar com os
novos arquivos e para operar de forma mais eficiente,
com maior escalabilidade e facilidade de manutencao.

4.2 Planejamento

Nesta subsecéo, serdo detalhadas as ferramentas e
os métodos utilizados para implementar a refatoragao
e a conteinerizagdo da aplicacio DUCA. O processo
foi conduzido para garantir que a aplicagdo se tornasse
mais escalavel e de facil manutengao.

4.2.1 Instrumentagdo

Durante o processo de refatoracdo da aplicagao, di-
versas ferramentas foram utilizadas para garantir efi-
ciéncia, padronizacao e qualidade no desenvolvimento.
GitLab e GitHub foram empregados para controle de
versdo, possibilitando a colaboragdo entre os desen-
volvedores e 0 acompanhamento das modificagées re-
alizadas no cédigo. Docker e Docker Compose foram
implementados com o objetivo de permitir que cada
componente da aplicagio pudesse ser executado de
forma isolada, facilitando a replicagdo e garantindo
a consisténcia entre os ambientes de desenvolvimento,
teste e producdo. A refatoracdo do cédigo foi con-
duzida dentro do framework Laravel, utilizando a ver-
sdo 7.4 do PHP, aproveitando seus recursos para mod-
ularizar o sistema e garantir maior manutenibilidade.
O Composer foi utilizado para o gerenciamento de de-
pendéncias do projeto, otimizando o processo de in-
stalacdo e atualizacdo de bibliotecas. Como ambi-
ente de desenvolvimento principal, foi adotado o Vi-
sual Studio Code, por oferecer integracdo agil com as
demais ferramentas utilizadas. Além disso, a ferra-
menta SonarQube foi empregada para andlise estatica
do cédigo, permitindo avaliar métricas de qualidade
como complexidade, duplicagdo e coesdo entre moédu-
los.

Quanto aos métodos aplicados, destaca-se a refa-
toracdo modular, na qual o cédigo foi reestruturado
em componentes menores e mais coesos, o que fa-
cilitou a manutencdo e o escalonamento do sistema.
Outro ponto relevante foi a automagao do processo de
deploy, implementada por meio do Docker Compose,
possibilitando a implantagdo da aplicacdo de forma
padronizada e com minima necessidade de ajustes man-
uais, contribuindo para maior consisténcia entre os
ambientes.

4.2.2 DUCA Antes da Refatoracdo

A versdo original da aplicagdo apresentava dificul-
dades na manipulacao dos arquivos de entrada devido
a mudancas estruturais nos dados fornecidos. Além
disso, o ambiente de desenvolvimento exigia config-
uragOes manuais para garantir a execucdo do ETL,
tornando o processo suscetivel a erros e demandando
mais tempo para ajustes e testes. A falta de padroniza-
¢do no carregamento dos dados resultava em incon-
sisténcias e impactava a eficiéncia do sistema, dificul-
tando a escalabilidade e manutencao da aplicacao.

4.2.3 Métricas

Para avaliar os efeitos da refatoracio e da conteiner-
izagdo da rotina de ETL na aplicagio DUCA, serdao
adotadas métricas tanto quantitativas quanto quali-

tativas, com o objetivo de mensurar o impacto das
mudancgas na manutencgio, estabilidade e desempenho
do sistema.

Entre as métricas previstas estd o tempo de implan-
tagdo, utilizado para comparar a duragdo do processo
de configuracdo do ambiente antes e depois da apli-
cacdo das melhorias, permitindo verificar o ganho em
eficiéncia com a automacao proposta.

A complexidade do cédigo serd analisada com base
em critérios como complexidade ciclomatica, dupli-
cagdo de trechos e grau de modularidade, buscando
estimar o nivel de manutenibilidade e organizacao es-
trutural da aplicagdo apds a refatoracédo.

Também seréo realizados testes com diferentes cenérios

de carga de dados, incluindo arquivos com registros
validos e registros contendo erros estruturais. O obje-
tivo é verificar a capacidade do sistema em identificar,
tratar e isolar falhas durante o processo de ETL, con-
tribuindo para a andlise da robustez da solugao.

Além das métricas técnicas, serd conduzida uma
avaliacdo qualitativa com os desenvolvedores envolvi-
dos no projeto, visando coletar percepgdes sobre clareza

estrutural, padronizagdo do cédigo e facilidade de manutencao.

Por fim, a documentagdo técnica serd considerada
como parte da avaliagdo, analisando a existéncia e
qualidade de materiais produzidos para apoiar a repli-
cacdo do ambiente e promover maior autonomia da
equipe em futuras implantacoes.

4.2.4 Metodologia de Avaliacdo

A avaliagdo dos impactos da refatoracdo foi real-
izada com base na seguinte abordagem:

e Teste A /B: comparagio do comportamento da
aplicacdo antes e depois da refatoracdo e con-
teinerizagdo, avaliando a estabilidade e eficién-
cia do ETL. Para isso, foram isolados dois gru-
pos distintos: um com a aplicagdo operando sem
conteinerizagdo e outro com a aplicacdo execu-
tada dentro de contéineres Docker. Essa sepa-
ragdo permitiu a realizagdo do estudo de caso in
vivo de forma controlada, garantindo uma com-
paracdo precisa entre os dois ambientes.

4.3 Operacao

A secéo de Operagdo descreve a condugéo e a avali-
acdo do estudo de caso relacionado a refatoragao e con-
teinerizagao da aplicagdo DUCA. Este estudo se carac-
teriza como um estudo de caso in vivo, pois as andalises
foram realizadas em ambiente real, sem o rigor dos ex-
perimentos laboratoriais.

Para assegurar resultados confidveis e replicdveis,
foram adotados principios da experimentacdo cienti-
fica, mitigando vieses e aplicando técnicas validadas
para coleta e andlise de dados. No contexto da apli-
cacdo DUCA, que utiliza PHP Laravel 7.} e esta con-
teinerizada com Docker, foram estabelecidos métodos
especificos para avaliar a performance e o impacto das
mudangas implementadas.

A operagéo da aplicagéo foi dividida em trés etapas
principais: preparagdo, execucdo e coleta de métricas.

4.3.1 Preparacdo

Consiste na configuracdo do ambiente de testes e
preparacdo dos arquivos de entrada para os experi-

Revista de Sistemas e Computacdo, Salvador, v. 15, n. 3, p. 70-76, set/dez 2025 73
https://revistarsc.com.br/ojs/index.php/rsc

https://revistarsc.com.br/ojs/index.php/rsc

mentos. A configuracdo do ambiente foi padronizada
utilizando Docker, garantindo a consisténcia entre os
testes e o ambiente real de producdo. Além disso,
os arquivos flat (.csv, .json, .xlsx) foram organizados
para assegurar a compatibilidade com a nova estru-
tura de ETL.

4.3.2 Execugdo

Durante essa fase, a aplicagdo processou os dados
utilizando as melhorias implementadas. Para validar
a estabilidade e eficiéncia da solugdo, foram analisa-
dos diferentes cendrios de carga: um conjunto com da-
dos vélidos e bem estruturados, e outro contendo reg-
istros com violagGes propositalmente inseridas, como
colunas ausentes, tipos de dados incorretos e registros
duplicados.

Esses testes permitiram avaliar a resiliéncia do sis-
tema frente a inconsisténcias, bem como sua capaci-
dade de identificar e tratar erros de forma adequada.
Foram realizadas multiplas execuc¢des do processo de
ETL, monitorando os tempos de processamento, a
taxa de sucesso nas importagoes e as falhas detectadas
durante as cargas.

Coleta de Métricas

A coleta de métricas foi realizada com base nas seguintes

métricas, utilizadas posteriormente na analise dos re-
sultados:

e Tempo de implantagio: tempo necessério para
preparar o ambiente antes e depois da conteiner-
izagao, mensurado em minutos.

e Complexidade do cédigo: anilise da versdo
refatorada por meio do SonarQube, considerando
aspectos como complexidade ciclomética e dupli-
cacdo de cddigo.

e Estabilidade da carga de dados: avaliacdo
da robustez do processo de ETL a partir de exe-
cugdes com dados validos e com registros viola-
dos, observando a ocorréncia e o tratamento de
falhas.

e Avaliacao qualitativa dos desenvolvedores:
revisdo técnica dos artefatos refatorados, con-
siderando facilidade de manutencéo, clareza es-
trutural e aderéncia as regras de negécio.

Essas métricas fornecerdo uma visdo abrangente do
impacto da refatoragdo e conteinerizagio, permitindo
identificar melhorias e potenciais ajustes para futuras
otimizacgoes.

5. RESULTADOS E DISCUSSAO

Esta sec@o apresenta os principais resultados obti-
dos apéds a aplicagdo das melhorias na rotina de ETL
da plataforma DUCA. Sao descritos os impactos da
refatoracdo e da conteinerizagdo no desempenho, na
escalabilidade e na manutencdo do sistema, com base
nas métricas e critérios definidos anteriormente.

5.1 Tempo de Implantaciao

Com a introducgdo do Docker e do Docker Compose,
o tempo médio de preparagdo do ambiente caiu de
aproximadamente 40 horas (ou 2.400 minutos) para

apenas 19,8 minutos, o que representa uma reducao de
aproximadamente 99,1 por cento no processo de im-
plantacdo. Esse tempo inicial considerava um cendrio
com uma documentacdo minima ndo formal; em sua
auséncia, a implantacdo poderia levar ainda mais tempo,
de forma exponencial. A padronizagdo automatizada
do setup por meio da conteinerizagdo contribuiu di-
retamente para essa melhoria. A Figura P exempli-
fica a execugdo da aplicaggo DUCA em containers
Docker, evidenciando o ambiente modularizado com
0s servigos app, db e ducaweb operando de forma iso-
lada e consistente. Ja a Figura [apresenta visual-
mente a comparacio entre os tempos de implantagao
antes e depois da conteinerizacdo, refor¢ando o im-
pacto da abordagem adotada.

Containers

CPUE) La

Figure 2: Containers Docker executando os
servigos da aplicaggdo DUCA.

Tempo de Implantagao

2500
2000

1500

Minutos

1000

Com o uso do Docker

Sem o uso do Docker

Figure 3: Comparativo visual do tempo de im-
plantacao com e sem uso do Docker.

5.2 Manutenibilidade e Complexidade do
Cadigo

Foi observada uma melhora significativa na estru-
tura do cédigo apds a refatoragdo, com maior coesdo
e menor acoplamento entre os médulos. Embora nao
tenha sido possivel comparar diretamente com a ver-
sdo anterior — devido a auséncia de um repositério
versionado ou histérico rastredvel —, as métricas co-
letadas via SonarQube sobre a versdo refatorada in-
dicam um cenério positivo.

A andlise indicou uma complexidade ciclomatica mé-
dia de 2,9 por funcdo, sem ocorréncia de duplicagoes
criticas e com estrutura de cédigo bem organizada.

Revista de Sistemas e Computacdo, Salvador, v. 15, n. 3, p. 70-76, set/dez 2025 74
https://revistarsc.com.br/ojs/index.php/rsc

https://revistarsc.com.br/ojs/index.php/rsc

Esses indicadores refletem a adocdo de boas préti-
cas no processo de refatoracdo, contribuindo para um
c6digo mais legivel, modular e de facil manutencao.

5.3 Resultados Qualitativos

Antes da refatoracdo, a importacdo dos arquivos era
frequentemente comprometida por inconsisténcias de
estrutura, resultando em falhas recorrentes. Apods a
modularizacdo e adaptacdo do cédigo, a taxa de erros
caiu drasticamente, pois o0 novo sistema passou a aten-
der ao formato esperado dos arquivos flat e a tratar
adequadamente diversas excegoes.

Na prética, a carga de dados era conduzida de forma
manual e despadronizada, exigindo que os desenvolve-
dores interviessem constantemente para ajustar col-
unas, corrigir tipos ou editar arquivos, a fim de vi-
abilizar a leitura. Sem validagbes automaticas nem
monitoramento, o processo se tornava lento, sujeito a
falhas silenciosas e altamente dependente do conheci-
mento prévio da equipe técnica.

Como o sistema anterior ndo seguia um padrao es-
trutural e ndo oferecia retorno confidvel, ndo foi pos-
sivel mensurar uma taxa precisa de falhas. No en-
tanto, diante da recorréncia dos problemas, estima-se
que a taxa de sucesso era praticamente nula, inviabi-
lizando qualquer tentativa de automagdo consistente
da carga de dados.

Além da manutencao corretiva, também foram apli-
cadas acoes de manutencgao perfectiva, com validacoes
e excegoes baseadas nas regras de negocio. Isso pro-
porcionou maior robustez ao sistema, permitindo li-
dar com variagoes nos dados de entrada e garantindo
a integridade das informacoes carregadas. A Figura
apresenta a nova interface de monitoramento das car-
gas ETL, permitindo o acompanhamento visual dos
status de sucesso ou falha em tempo real.

<<<<<<<<

Figure 4: Interface de monitoramento das car-
gas ETL com indicagdo de status das exe-
cugoes.

6. CONCLUSAO

Este trabalho teve como objetivo principal aplicar
técnicas de refatoragdo e conteinerizacdo a funcional-
idade ETL da aplicagio DUCA, a fim de modern-
izar e otimizar sua performance frente as mudangas
estruturais nos arquivos de dados utilizados pelo sis-
tema. A necessidade dessa intervencdo surgiu da di-
ficuldade que o sistema apresentava para lidar com
miultiplos formatos de entrada, exigindo uma solugiao
que fosse ao mesmo tempo escalével, padronizada e de

facil manutencéo.

Com a reestruturagdo do cédigo, adotando uma abor-
dagem modular e de responsabilidade nica, foi pos-
sivel aumentar significativamente a clareza e manuteni-
bilidade do sistema. Além disso, a introdugao da con-
teinerizagdo com Docker e Docker Compose permi-
tiu padronizar o ambiente de desenvolvimento e pro-
ducdo, reduzindo em 99,1 por cento o tempo de im-
plantagao e eliminando erros recorrentes relacionados
a configuracdo manual do ambiente.

Através do estudo de caso in vivo, com testes real-
izados em arquivos reais fornecidos pelo stakeholder,
foi possivel estabelecer métricas consistentes para avaliar
os impactos da solugdo. A reducdo da taxa de erros e
o controle efetivo sobre o tempo de execugdo das roti-
nas ETL foram evidenciados ao longo do estudo. A
aplicacdo, antes rigida e fragil, passou a ser flexivel,
adaptavel e tecnicamente sustentavel.

As contribuicbes deste trabalho vio além do con-
texto especifico da aplicacdo DUCA. Ele serve como
base metodolégica para a modernizacdo de outros sis-
temas legados que enfrentam desafios semelhantes, so-
bretudo em ambientes institucionais que demandam
estabilidade, escalabilidade e integridade na manipu-
lagdo de dados.

Como trabalhos futuros, recomenda-se a investigacao
de solugdes baseadas em orquestracdo de containers,
como o uso de Kubernetes para gerenciamento de multi-
plas instancias da funcionalidade ETL. Também é pos-
sivel explorar técnicas de monitoramento continuo e
otimizacdo dindmica de rotinas de carga e transfor-
macdo de dados, de modo a aprimorar ainda mais
o desempenho do sistema em cendrios de maior de-
manda.

7. REFERENCES

[1] FOWLER, Martin. Refactoring: Improving the
Design of Existing Code. Boston:
Addison-Wesley Professional, 2018.

[2] ARUNA, K.; PRADEEP, G. Performance and
scalability improvement using IoT-based edge
computing container technologies. SN Computer
Science, v. 1, p. 91, 2020.

[3] MASDARI, M.; ZANGAKANI, M. Challenges
and security issues in Docker-based cloud
computing. The Journal of Supercomputing,
2020.

[4] POTDAR, A. M.; NARAYAN, D. G.;
KENGOND, S.; MULLA, M. M. Performance
evaluation of docker container and virtual
machine. Procedia Computer Science, v. 171, p.
1419-1428, 2020.

[5] COLACO JUNIOR, Methanias. Projetando
Sistemas de Apoio d Decisao Baseados em Data
Warehouse. Rio de Janeiro: Axcel Books do
Brasil Editora Ltda., 2004.

[6] PASSOS, A.; RODRIGUES JUNIOR, M. C.; et
al. DUCA: um aplicativo civil colaborativo para
alavancar a educacdo. In: SIMPOSIO
BRASILEIRO DE SISTEMAS DE
INFORMAGAO (SBSI), 2019, Aracaju. Anais
Estendidos do Simpésio Brasileiro de Sistemas
de Informagao. Porto Alegre: SBC, 2019. .

Revista de Sistemas e Computacdo, Salvador, v. 15, n. 3, p. 70-76, set/dez 2025 75
https://revistarsc.com.br/ojs/index.php/rsc

https://revistarsc.com.br/ojs/index.php/rsc

[7

[10]

[11]

145-148. DOI:

https://doi.org/10.5753 /sbsi.2019.7460.
COLACO JUNIOR, Methanias. IA Para A
Galera Toda: Agentes e Inovagdo Experimental
Sem Cédigo. Edicao independente, 2025.
SCHLEGEL, Aaron. Containerizing ETL Data
Pipelines with Docker. Medium, 2019.
Disponivel em:
https://medium.com/@AaronSchlegel/containerizing-
etl-data-pipelines-with-docker-9e30de90a313.
Acesso em: 15 abr. 2025.

KULAL, Akshatha. Building an Automated
ETL Pipeline with Docker, Jenkins, Logstash,
Elasticsearch, and Kibana. Medium, 2024.
Disponivel em:
https://medium.com/@akshathakulal /building-
an-automated-etl-pipeline-with-docker-jenkins-
logstash-elasticsearch-and-kibana-6603a118816c¢.
Acesso em: 20 mai. 2025.

PAYPRO GLOBAL. Docker vs Kubernetes:
Choosing the Right Container Strategy. 2024.
Disponivel em:
https://payproglobal.com/blog/docker-vs-
kubernetes/. Acesso em: 10 jun. 2025.

KAUR, S.; KAUR, K. Analysis of the Impact of
Refactoring on Software Quality: A Case Study.
International Journal of Software Engineering
and Its Applications, v. 10, n. 11, p. 1-14, 2016.

Revista de Sistemas e Computacdo, Salvador, v. 15, n. 3, p. 70-76, set/dez 2025
https://revistarsc.com.br/ojs/index.php/rsc

76

https://revistarsc.com.br/ojs/index.php/rsc

	Introdução
	Base Conceitual
	Trabalhos Relacionados
	Estudo de Caso
	Definição do Objetivo
	Planejamento
	Instrumentação
	DUCA Antes da Refatoração
	Métricas
	Metodologia de Avaliação

	Operação
	Preparação
	Execução

	Resultados e Discussão
	Tempo de Implantação
	Manutenibilidade e Complexidade do Código
	Resultados Qualitativos

	Conclusão
	References

