
Optimizing ETL Applications: A Refactoring and
Containerization Approach

Luan Gustavo Oliveira
Santana

Universidade Federal de
Sergipe

Itabaiana – SE – Brasil
luan2103@academico.ufs.br

Luís Gabriel Costa Lima
Ribeiro

Universidade Federal de
Sergipe

Itabaiana – SE – Brasil
logxpbr@gmail.com

Methanias Colaço Júnior
Universidade Federal de

Sergipe
Itabaiana – SE – Brasil
mjrse@hotmail.com

ABSTRACT
Objective: Apply refactoring and containerization

techniques to the DUCA application, a social control
platform focused on school management in the state of
Sergipe, with emphasis on the ETL (Extract, Trans-
form, Load) functionality. The goal is to improve the
performance, maintainability, and scalability of the
application.

Methodology/approach: The study involved re-
structuring the ETL functionality code to adapt the
system to new formats of flat files, in addition to con-
tainerizing the application using Docker and Docker
Compose. The evaluation was conducted through an
in vivo case study, using metrics such as deployment
time, structural code complexity, data load stability,
and qualitative feedback from the development team.

Originality/relevance: The combination of code
refactoring and containerization applied to a real legacy
system is still scarcely explored in an integrated man-
ner in the literature. This work provides a practical
solution for modernizing ETL processes in public ap-
plications, with direct gains in scalability, standard-
ization, and maintainability.

Main results: After the improvements, there was
a reduction of approximately 99.1% in environment
deployment time, stabilization of ETL routines, a de-
crease in error rates, and better control over execution
time.

Theoretical/methodological contributions: The
study demonstrates how modern software engineering
practices can be applied to legacy systems, present-
ing a replicable methodology for environments that
require high data control and development standard-
ization. It highlights the use of Docker as a central
tool for scalability and environment consistency.

RESUMO
Aplicar técnicas de refatoração e conteinerização na

aplicação DUCA, uma plataforma de controle social
voltada para a gestão escolar no estado de Sergipe,
com foco na funcionalidade ETL (do inglês, Extract,
Transform, Load). O objetivo é melhorar o desem-
penho, a manutenibilidade e a escalabilidade da apli-
cação. O estudo realizou a reestruturação do código
da funcionalidade ETL para adaptar o sistema a novos
formatos de arquivos flat, além da conteinerização da
aplicação com Docker e Docker Compose. A avali-
ação foi conduzida por meio de um estudo de caso
in vivo, com uso de métricas como tempo de implan-
tação, complexidade estrutural do código, estabilidade
da carga de dados e avaliação qualitativa da equipe
técnica. A combinação de refatoração de código e con-
teinerização aplicada a um sistema legado real ainda
é pouco abordada de forma integrada na literatura.
Este trabalho oferece uma solução prática para a mod-
ernização de processos ETL em aplicações públicas,
com ganhos diretos em escalabilidade, padronização
e manutenção. Após as melhorias, observou-se uma
redução de aproximadamente 99,1% no tempo de im-
plantação do ambiente, estabilização das rotinas ETL,
queda nas taxas de erro e melhor controle do tempo de
execução. O trabalho demonstra como práticas mod-
ernas de engenharia de software podem ser aplicadas
em sistemas legados, apresentando uma metodologia
replicável para ambientes que exigem alto controle de
dados e padronização no desenvolvimento. Destaca-se
o uso do Docker como ferramenta central para escal-
abilidade e consistência de ambientes.

Keywords
ETL, Refactoring, Docker, Containerization, Lar-

avel, Software Engineering
Palavras-Chave
ETL, Refatoração, Docker, Conteinerização, Engen-
haria de Software

1. INTRODUÇÃO
Nos últimos anos, a crescente complexidade dos sis-

temas de software tem exigido abordagens mais efi-
cientes para o desenvolvimento e manutenção de apli-
cações. A refatoração de código, definida como o pro-
cesso de melhorar a estrutura interna do software sem
modificar seu comportamento externo, é fundamen-
tal para a melhoria contínua do software, permitindo
não apenas a correção de problemas, mas também a

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 70–76, set/dez 2025
https://revistarsc.com.br/ojs/index.php/rsc

70

https://revistarsc.com.br/ojs/index.php/rsc


otimização da estrutura interna do código [1].
Neste contexto, a conteinerização surge como uma

tecnologia poderosa para padronizar ambientes de de-
senvolvimento, garantindo que as aplicações funcionem
de maneira consistente em diferentes ambientes e fa-
cilitando a transição entre programadores [4]. Docker,
em particular, tem sido amplamente adotado devido
à sua capacidade de criar contêineres que encapsulam
uma aplicação juntamente com suas dependências, as-
segurando que o ambiente de execução seja idêntico
em qualquer lugar que o contêiner seja implantado.

Com base nessas tecnologias modernas, este tra-
balho propõe sua aplicação sobre a DUCA, um sis-
tema apresentado por PASSOS et al. (2019), que con-
siste em um aplicativo civil colaborativo voltado para
a melhoria da gestão educacional. O estudo original
destacou a importância da confiabilidade dos proces-
sos de manipulação de dados no contexto escolar, re-
forçando a necessidade de soluções eficazes para lidar
com grandes volumes de informações. No entanto,
não foram exploradas abordagens como refatoração e
conteinerização, que poderiam otimizar significativa-
mente o desempenho da aplicação.

Entretanto, apesar das vantagens oferecidas por es-
sas técnicas, muitos sistemas legados continuam a en-
frentar desafios significativos, como a complexidade
na configuração dos ambientes de desenvolvimento e
a dificuldade em manter a integridade e a eficiência
dos processos de manipulação de dados. A aplicação
DUCA, que atua em um contexto onde a gestão de
dados é essencial, enfrenta desafios relacionados à sua
funcionalidade de ETL (do inglês, Extract, Transform,
Load), que requer alta performance e confiabilidade
[6]. A Figura 1 ilustra a interface original da apli-
cação DUCA apresentada no estudo, que serviu como
ponto de partida para as melhorias propostas neste
estudo.

Figure 1: Tela inicial da aplicação

Com base nisso, o objetivo principal deste trabalho
é realizar a refatoração e conteinerização da aplicação
DUCA, com foco na funcionalidade de ETL, utilizando
a tecnologia Docker. A proposta deste estudo é demon-
strar como a aplicação dessas técnicas pode resolver
os desafios enfrentados, melhorando o desempenho, a
manutenção e a escalabilidade da aplicação.

A seguir, o trabalho está estruturado em seções que
abordam a base conceitual, a revisão de trabalhos rela-
cionados, a metodologia aplicada, um estudo de caso
prático e, por fim, as conclusões obtidas a partir dos
resultados.

2. BASE CONCEITUAL
A refatoração de código é uma prática fundamen-

tal no desenvolvimento de software, que visa melhorar
a estrutura interna de um sistema sem modificar seu
comportamento externo. Segundo FOWLER (2018),
a refatoração é um processo disciplinado, realizado
para aumentar a legibilidade, facilitar a manutenção e
reduzir a propensão a erros no código. Ao melhorar o
design do software após o código já ter sido escrito, a
refatoração permite que o sistema continue evoluindo
de maneira sustentável, mantendo sua funcionalidade
original enquanto se adapta a novas exigências.

No contexto da gestão de dados, a funcionalidade
de ETL (do inglês, Extract, Transform, Load) desem-
penha um papel crucial. Segundo COLAÇO JÚNIOR
(2004), o processo de ETL envolve a extração de da-
dos de diversas fontes operacionais, sua transformação
para atender aos requisitos de qualidade e formato, e,
finalmente, sua carga em um Data Warehouse, onde
os dados são estruturados para facilitar a tomada de
decisões. A refatoração de processos de ETL é partic-
ularmente importante, pois pode melhorar significati-
vamente a eficiência e a robustez do sistema de pro-
cessamento de dados, assegurando que as informações
sejam manipuladas de maneira íntegra e precisa.

Para enfrentar os desafios relacionados à configu-
ração do ambiente de desenvolvimento, que frequente-
mente incluem a gestão de componentes como bancos
de dados, PHP, Laravel e Composer, a conteinerização
tem se mostrado uma solução eficaz. Docker, em par-
ticular, oferece uma tecnologia que encapsula a apli-
cação, suas dependências e bibliotecas em um único
contêiner. Isso garante que a aplicação funcione de
maneira consistente, independentemente do ambiente
em que está sendo executada. Além disso, Docker au-
tomatiza a execução e a implantação de aplicações em
contêineres, facilitando a padronização dos ambientes
de desenvolvimento e a colaboração entre diferentes
programadores [3].

SCHLEGEL (2019) apresenta um estudo sobre a
contêinerização de pipelines ETL utilizando Docker,
demonstrando como essa tecnologia pode garantir con-
sistência e portabilidade nos processos de extração e
transformação de dados. Essa abordagem permite
que os pipelines ETL sejam encapsulados de forma
modular, garantindo que diferentes estágios do pro-
cesso possam ser escalados conforme a necessidade,
reduzindo a dependência de configurações específicas
de ambiente e tornando a integração de novas fontes
de dados mais ágil e eficiente.

Já KULAL (2024) detalha a construção de uma
pipeline ETL automatizada usando Docker, Jenkins,
Logstash, Elasticsearch e Kibana, destacando os bene-
fícios da escalabilidade e automação. A integração
dessas ferramentas possibilita a criação de fluxos de
trabalho dinâmicos, permitindo monitoramento em tempo
real e otimizações contínuas no processamento de da-
dos. A utilização de ferramentas como Logstash e
Elasticsearch dentro do contexto ETL demonstra como
a conteinerização pode facilitar a implementação de
arquiteturas orientadas a eventos, promovendo maior
flexibilidade e robustez ao processo.

Além disso, PAYPRO GLOBAL (2024) discute a
aplicação de contêineres Docker e Kubernetes, enfa-

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 70–76, set/dez 2025
https://revistarsc.com.br/ojs/index.php/rsc

71

https://revistarsc.com.br/ojs/index.php/rsc


tizando sua importância na padronização e eficiência
do desenvolvimento de software. Kubernetes amplia
os benefícios da conteinerização ao permitir a orques-
tração automática de múltiplos contêineres, garantindo
alta disponibilidade, balanceamento de carga e escal-
abilidade sob demanda. Essa abordagem é essencial
para sistemas que lidam com grandes volumes de da-
dos, como pipelines ETL, garantindo que os serviços
sejam executados de forma distribuída e resiliente.

Dessa forma, a combinação de refatoração de código
e conteinerização demonstra-se uma abordagem promis-
sora para a modernização e otimização de processos
ETL. A adoção de tecnologias como Docker e Kuber-
netes permite que sistemas de processamento de da-
dos sejam mais eficientes, escaláveis e resilientes a mu-
danças, tornando a manutenção e evolução das apli-
cações mais previsíveis e acessíveis.

3. TRABALHOS RELACIONADOS
A aplicação de técnicas de refatoração de código e

conteinerização em sistemas complexos, especialmente
em processos de ETL (Extract, Transform, Load), tem
se destacado como um campo promissor de pesquisa.
Apesar do potencial dessas abordagens para otimizar
o desempenho, a escalabilidade e a manutenção de
aplicações, a literatura recente ainda é relativamente
limitada em estudos que exploram essas práticas de
forma integrada.

ARUNA e PRADEEP (2020) propuseram melhorias
de desempenho e escalabilidade utilizando tecnologias
de contêineres em computação de borda baseada em
IoT. O estudo enfatiza os benefícios da contêineriza-
ção, especialmente em termos de flexibilidade e ca-
pacidade de resposta em sistemas distribuídos. No
entanto, ele não aborda diretamente a refatoração do
código subjacente ou a aplicação dessas técnicas em
sistemas de ETL.

ARUNA e PRADEEP (2020) discutiram os desafios
de segurança e as melhores práticas recomendadas para
o uso de contêineres Docker, com foco em ambientes
de nuvem. Embora esse estudo seja essencial para a
compreensão da segurança em contêineres, ele não se
aprofunda na aplicação dessas práticas para otimiza-
ção de sistemas ETL.

KAUR e KAUR (2016) realizaram um estudo prático
de refatoração em uma aplicação de biblioteca desen-
volvida em Java, utilizando ferramentas como Eclipse,
JDeodorant e plugins de métricas para detectar “bad
smells” e mensurar os impactos da refatoração. As
autoras demonstraram, por meio de indicadores como
Complexidade Ciclomática de McCabe, LCOM e WMC,
que a refatoração é eficaz para reduzir a complexidade
estrutural e melhorar a manutenibilidade do código.
Embora o estudo não explore diretamente cenários en-
volvendo ETL ou conteinerização, seus achados cor-
roboram a proposta deste trabalho ao evidenciar os
benefícios mensuráveis da refatoração em sistemas ex-
istentes.

Diante disso, o presente trabalho propõe uma con-
tribuição original ao integrar técnicas de refatoração
de código e contêinerização com Docker, especifica-
mente para otimizar a funcionalidade de ETL de uma
aplicação existente, a DUCA. Diferente dos estudos

mencionados, que abordam os temas de forma isolada
ou em contextos específicos, este trabalho oferece uma
abordagem prática e integrada, com uma análise de-
talhada das métricas de desempenho, escalabilidade e
manutenção, antes e depois das melhorias implemen-
tadas.

4. ESTUDO DE CASO
Esta seção apresenta a aplicação prática da refa-

toração e conteinerização na plataforma DUCA, com
foco na rotina de ETL. A iniciativa buscou solucionar
problemas relacionados à manipulação de arquivos com
diferentes estruturas, comprometendo a eficiência do
sistema. As seções subsequentes detalham o objetivo
específico da avaliação empírica, o planejamento das
ações, as ferramentas e métodos utilizados, bem como
as métricas e os critérios adotados para avaliar os re-
sultados obtidos com a aplicação das melhorias imple-
mentadas.

4.1 Definição do Objetivo
Este estudo tem como objetivo principal melhorar o

desempenho, a manutenção e a escalabilidade da apli-
cação DUCA por meio da refatoração do código e da
conteinerização com a utilização de Docker. A refa-
toração é necessária, pois a aplicação, em sua forma
atual, não consegue processar corretamente os arquivos
flat em diversos formatos, tais como .csv, .json e .xlsx,
fornecidos pelo stakeholder, devido a uma alteração na
estrutura.

Especificamente, o estudo visa:

• Melhorar o desempenho: a refatoração do
código foi iniciada para adaptar a funcionalidade
de ETL à nova estrutura dos arquivos, otimizando
o processamento dos dados. Isso inclui a ree-
scrita das rotinas de extração e transformação
para que consigam lidar com diferentes formatos
de entrada de forma eficiente, diminuindo o tempo
de execução e o consumo de recursos.

• Facilitar a manutenção: a conteinerização da
aplicação, utilizando Docker, permitirá modu-
larizar o sistema, facilitando o processo de manutenção.
Dessa forma, será possível aplicar correções e
atualizações relacionadas às mudanças nos ar-
quivos de forma mais ágil e com menor impacto
no ambiente geral da aplicação.

• Aumentar a escalabilidade: o uso de Docker
também permitirá que a aplicação seja facilmente
escalada, executando múltiplas instâncias da fun-
cionalidade de ETL, conforme necessário. Isso
garantirá que a aplicação possa lidar com vol-
umes maiores de dados e uma diversidade de
estruturas de entrada, sem comprometer o de-
sempenho.

A implementação do Docker trará benefícios adi-
cionais, como a consistência entre os ambientes de de-
senvolvimento e produção, garantindo maior confia-
bilidade no sistema. Além disso, destaca-se que a ne-
cessidade de utilização de arquivos .csv está atrelada
a uma restrição tecnológica imposta pelo fornecedor
dos dados. Espera-se que, ao final deste trabalho, a

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 70–76, set/dez 2025
https://revistarsc.com.br/ojs/index.php/rsc

72

https://revistarsc.com.br/ojs/index.php/rsc


aplicação DUCA esteja preparada para lidar com os
novos arquivos e para operar de forma mais eficiente,
com maior escalabilidade e facilidade de manutenção.

4.2 Planejamento
Nesta subseção, serão detalhadas as ferramentas e

os métodos utilizados para implementar a refatoração
e a conteinerização da aplicação DUCA. O processo
foi conduzido para garantir que a aplicação se tornasse
mais escalável e de fácil manutenção.

4.2.1 Instrumentação
Durante o processo de refatoração da aplicação, di-

versas ferramentas foram utilizadas para garantir efi-
ciência, padronização e qualidade no desenvolvimento.
GitLab e GitHub foram empregados para controle de
versão, possibilitando a colaboração entre os desen-
volvedores e o acompanhamento das modificações re-
alizadas no código. Docker e Docker Compose foram
implementados com o objetivo de permitir que cada
componente da aplicação pudesse ser executado de
forma isolada, facilitando a replicação e garantindo
a consistência entre os ambientes de desenvolvimento,
teste e produção. A refatoração do código foi con-
duzida dentro do framework Laravel, utilizando a ver-
são 7.4 do PHP, aproveitando seus recursos para mod-
ularizar o sistema e garantir maior manutenibilidade.
O Composer foi utilizado para o gerenciamento de de-
pendências do projeto, otimizando o processo de in-
stalação e atualização de bibliotecas. Como ambi-
ente de desenvolvimento principal, foi adotado o Vi-
sual Studio Code, por oferecer integração ágil com as
demais ferramentas utilizadas. Além disso, a ferra-
menta SonarQube foi empregada para análise estática
do código, permitindo avaliar métricas de qualidade
como complexidade, duplicação e coesão entre módu-
los.

Quanto aos métodos aplicados, destaca-se a refa-
toração modular, na qual o código foi reestruturado
em componentes menores e mais coesos, o que fa-
cilitou a manutenção e o escalonamento do sistema.
Outro ponto relevante foi a automação do processo de
deploy, implementada por meio do Docker Compose,
possibilitando a implantação da aplicação de forma
padronizada e com mínima necessidade de ajustes man-
uais, contribuindo para maior consistência entre os
ambientes.

4.2.2 DUCA Antes da Refatoração
A versão original da aplicação apresentava dificul-

dades na manipulação dos arquivos de entrada devido
a mudanças estruturais nos dados fornecidos. Além
disso, o ambiente de desenvolvimento exigia config-
urações manuais para garantir a execução do ETL,
tornando o processo suscetível a erros e demandando
mais tempo para ajustes e testes. A falta de padroniza-
ção no carregamento dos dados resultava em incon-
sistências e impactava a eficiência do sistema, dificul-
tando a escalabilidade e manutenção da aplicação.

4.2.3 Métricas
Para avaliar os efeitos da refatoração e da conteiner-

ização da rotina de ETL na aplicação DUCA, serão
adotadas métricas tanto quantitativas quanto quali-

tativas, com o objetivo de mensurar o impacto das
mudanças na manutenção, estabilidade e desempenho
do sistema.

Entre as métricas previstas está o tempo de implan-
tação, utilizado para comparar a duração do processo
de configuração do ambiente antes e depois da apli-
cação das melhorias, permitindo verificar o ganho em
eficiência com a automação proposta.

A complexidade do código será analisada com base
em critérios como complexidade ciclomática, dupli-
cação de trechos e grau de modularidade, buscando
estimar o nível de manutenibilidade e organização es-
trutural da aplicação após a refatoração.

Também serão realizados testes com diferentes cenários
de carga de dados, incluindo arquivos com registros
válidos e registros contendo erros estruturais. O obje-
tivo é verificar a capacidade do sistema em identificar,
tratar e isolar falhas durante o processo de ETL, con-
tribuindo para a análise da robustez da solução.

Além das métricas técnicas, será conduzida uma
avaliação qualitativa com os desenvolvedores envolvi-
dos no projeto, visando coletar percepções sobre clareza
estrutural, padronização do código e facilidade de manutenção.

Por fim, a documentação técnica será considerada
como parte da avaliação, analisando a existência e
qualidade de materiais produzidos para apoiar a repli-
cação do ambiente e promover maior autonomia da
equipe em futuras implantações.

4.2.4 Metodologia de Avaliação
A avaliação dos impactos da refatoração foi real-

izada com base na seguinte abordagem:
• Teste A/B: comparação do comportamento da

aplicação antes e depois da refatoração e con-
teinerização, avaliando a estabilidade e eficiên-
cia do ETL. Para isso, foram isolados dois gru-
pos distintos: um com a aplicação operando sem
conteinerização e outro com a aplicação execu-
tada dentro de contêineres Docker. Essa sepa-
ração permitiu a realização do estudo de caso in
vivo de forma controlada, garantindo uma com-
paração precisa entre os dois ambientes.

4.3 Operação
A seção de Operação descreve a condução e a avali-

ação do estudo de caso relacionado à refatoração e con-
teinerização da aplicação DUCA. Este estudo se carac-
teriza como um estudo de caso in vivo, pois as análises
foram realizadas em ambiente real, sem o rigor dos ex-
perimentos laboratoriais.

Para assegurar resultados confiáveis e replicáveis,
foram adotados princípios da experimentação cientí-
fica, mitigando vieses e aplicando técnicas validadas
para coleta e análise de dados. No contexto da apli-
cação DUCA, que utiliza PHP Laravel 7.4 e está con-
teinerizada com Docker, foram estabelecidos métodos
específicos para avaliar a performance e o impacto das
mudanças implementadas.

A operação da aplicação foi dividida em três etapas
principais: preparação, execução e coleta de métricas.

4.3.1 Preparação
Consiste na configuração do ambiente de testes e

preparação dos arquivos de entrada para os experi-

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 70–76, set/dez 2025
https://revistarsc.com.br/ojs/index.php/rsc

73

https://revistarsc.com.br/ojs/index.php/rsc


mentos. A configuração do ambiente foi padronizada
utilizando Docker, garantindo a consistência entre os
testes e o ambiente real de produção. Além disso,
os arquivos flat (.csv, .json, .xlsx) foram organizados
para assegurar a compatibilidade com a nova estru-
tura de ETL.

4.3.2 Execução
Durante essa fase, a aplicação processou os dados

utilizando as melhorias implementadas. Para validar
a estabilidade e eficiência da solução, foram analisa-
dos diferentes cenários de carga: um conjunto com da-
dos válidos e bem estruturados, e outro contendo reg-
istros com violações propositalmente inseridas, como
colunas ausentes, tipos de dados incorretos e registros
duplicados.

Esses testes permitiram avaliar a resiliência do sis-
tema frente a inconsistências, bem como sua capaci-
dade de identificar e tratar erros de forma adequada.
Foram realizadas múltiplas execuções do processo de
ETL, monitorando os tempos de processamento, a
taxa de sucesso nas importações e as falhas detectadas
durante as cargas.
Coleta de Métricas
A coleta de métricas foi realizada com base nas seguintes
métricas, utilizadas posteriormente na análise dos re-
sultados:

• Tempo de implantação: tempo necessário para
preparar o ambiente antes e depois da conteiner-
ização, mensurado em minutos.

• Complexidade do código: análise da versão
refatorada por meio do SonarQube, considerando
aspectos como complexidade ciclomática e dupli-
cação de código.

• Estabilidade da carga de dados: avaliação
da robustez do processo de ETL a partir de exe-
cuções com dados válidos e com registros viola-
dos, observando a ocorrência e o tratamento de
falhas.

• Avaliação qualitativa dos desenvolvedores:
revisão técnica dos artefatos refatorados, con-
siderando facilidade de manutenção, clareza es-
trutural e aderência às regras de negócio.

Essas métricas fornecerão uma visão abrangente do
impacto da refatoração e conteinerização, permitindo
identificar melhorias e potenciais ajustes para futuras
otimizações.

5. RESULTADOS E DISCUSSÃO
Esta seção apresenta os principais resultados obti-

dos após a aplicação das melhorias na rotina de ETL
da plataforma DUCA. São descritos os impactos da
refatoração e da conteinerização no desempenho, na
escalabilidade e na manutenção do sistema, com base
nas métricas e critérios definidos anteriormente.

5.1 Tempo de Implantação
Com a introdução do Docker e do Docker Compose,

o tempo médio de preparação do ambiente caiu de
aproximadamente 40 horas (ou 2.400 minutos) para

apenas 19,8 minutos, o que representa uma redução de
aproximadamente 99,1 por cento no processo de im-
plantação. Esse tempo inicial considerava um cenário
com uma documentação mínima não formal; em sua
ausência, a implantação poderia levar ainda mais tempo,
de forma exponencial. A padronização automatizada
do setup por meio da conteinerização contribuiu di-
retamente para essa melhoria. A Figura 2 exempli-
fica a execução da aplicação DUCA em containers
Docker, evidenciando o ambiente modularizado com
os serviços app, db e ducaweb operando de forma iso-
lada e consistente. Já a Figura 3 apresenta visual-
mente a comparação entre os tempos de implantação
antes e depois da conteinerização, reforçando o im-
pacto da abordagem adotada.

Figure 2: Containers Docker executando os
serviços da aplicação DUCA.

Figure 3: Comparativo visual do tempo de im-
plantação com e sem uso do Docker.

5.2 Manutenibilidade e Complexidade do
Código

Foi observada uma melhora significativa na estru-
tura do código após a refatoração, com maior coesão
e menor acoplamento entre os módulos. Embora não
tenha sido possível comparar diretamente com a ver-
são anterior — devido à ausência de um repositório
versionado ou histórico rastreável —, as métricas co-
letadas via SonarQube sobre a versão refatorada in-
dicam um cenário positivo.

A análise indicou uma complexidade ciclomática mé-
dia de 2,9 por função, sem ocorrência de duplicações
críticas e com estrutura de código bem organizada.

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 70–76, set/dez 2025
https://revistarsc.com.br/ojs/index.php/rsc

74

https://revistarsc.com.br/ojs/index.php/rsc


Esses indicadores refletem a adoção de boas práti-
cas no processo de refatoração, contribuindo para um
código mais legível, modular e de fácil manutenção.

5.3 Resultados Qualitativos
Antes da refatoração, a importação dos arquivos era

frequentemente comprometida por inconsistências de
estrutura, resultando em falhas recorrentes. Após a
modularização e adaptação do código, a taxa de erros
caiu drasticamente, pois o novo sistema passou a aten-
der ao formato esperado dos arquivos flat e a tratar
adequadamente diversas exceções.

Na prática, a carga de dados era conduzida de forma
manual e despadronizada, exigindo que os desenvolve-
dores interviessem constantemente para ajustar col-
unas, corrigir tipos ou editar arquivos, a fim de vi-
abilizar a leitura. Sem validações automáticas nem
monitoramento, o processo se tornava lento, sujeito a
falhas silenciosas e altamente dependente do conheci-
mento prévio da equipe técnica.

Como o sistema anterior não seguia um padrão es-
trutural e não oferecia retorno confiável, não foi pos-
sível mensurar uma taxa precisa de falhas. No en-
tanto, diante da recorrência dos problemas, estima-se
que a taxa de sucesso era praticamente nula, inviabi-
lizando qualquer tentativa de automação consistente
da carga de dados.

Além da manutenção corretiva, também foram apli-
cadas ações de manutenção perfectiva, com validações
e exceções baseadas nas regras de negócio. Isso pro-
porcionou maior robustez ao sistema, permitindo li-
dar com variações nos dados de entrada e garantindo
a integridade das informações carregadas. A Figura 4
apresenta a nova interface de monitoramento das car-
gas ETL, permitindo o acompanhamento visual dos
status de sucesso ou falha em tempo real.

Figure 4: Interface de monitoramento das car-
gas ETL com indicação de status das exe-
cuções.

6. CONCLUSÃO
Este trabalho teve como objetivo principal aplicar

técnicas de refatoração e conteinerização à funcional-
idade ETL da aplicação DUCA, a fim de modern-
izar e otimizar sua performance frente às mudanças
estruturais nos arquivos de dados utilizados pelo sis-
tema. A necessidade dessa intervenção surgiu da di-
ficuldade que o sistema apresentava para lidar com
múltiplos formatos de entrada, exigindo uma solução
que fosse ao mesmo tempo escalável, padronizada e de

fácil manutenção.
Com a reestruturação do código, adotando uma abor-

dagem modular e de responsabilidade única, foi pos-
sível aumentar significativamente a clareza e manuteni-
bilidade do sistema. Além disso, a introdução da con-
teinerização com Docker e Docker Compose permi-
tiu padronizar o ambiente de desenvolvimento e pro-
dução, reduzindo em 99,1 por cento o tempo de im-
plantação e eliminando erros recorrentes relacionados
à configuração manual do ambiente.

Através do estudo de caso in vivo, com testes real-
izados em arquivos reais fornecidos pelo stakeholder,
foi possível estabelecer métricas consistentes para avaliar
os impactos da solução. A redução da taxa de erros e
o controle efetivo sobre o tempo de execução das roti-
nas ETL foram evidenciados ao longo do estudo. A
aplicação, antes rígida e frágil, passou a ser flexível,
adaptável e tecnicamente sustentável.

As contribuições deste trabalho vão além do con-
texto específico da aplicação DUCA. Ele serve como
base metodológica para a modernização de outros sis-
temas legados que enfrentam desafios semelhantes, so-
bretudo em ambientes institucionais que demandam
estabilidade, escalabilidade e integridade na manipu-
lação de dados.

Como trabalhos futuros, recomenda-se a investigação
de soluções baseadas em orquestração de containers,
como o uso de Kubernetes para gerenciamento de múlti-
plas instâncias da funcionalidade ETL. Também é pos-
sível explorar técnicas de monitoramento contínuo e
otimização dinâmica de rotinas de carga e transfor-
mação de dados, de modo a aprimorar ainda mais
o desempenho do sistema em cenários de maior de-
manda.

7. REFERENCES
[1] FOWLER, Martin. Refactoring: Improving the

Design of Existing Code. Boston:
Addison-Wesley Professional, 2018.

[2] ARUNA, K.; PRADEEP, G. Performance and
scalability improvement using IoT-based edge
computing container technologies. SN Computer
Science, v. 1, p. 91, 2020.

[3] MASDARI, M.; ZANGAKANI, M. Challenges
and security issues in Docker-based cloud
computing. The Journal of Supercomputing,
2020.

[4] POTDAR, A. M.; NARAYAN, D. G.;
KENGOND, S.; MULLA, M. M. Performance
evaluation of docker container and virtual
machine. Procedia Computer Science, v. 171, p.
1419–1428, 2020.

[5] COLAÇO JÚNIOR, Methanias. Projetando
Sistemas de Apoio à Decisão Baseados em Data
Warehouse. Rio de Janeiro: Axcel Books do
Brasil Editora Ltda., 2004.

[6] PASSOS, A.; RODRIGUES JÚNIOR, M. C.; et
al. DUCA: um aplicativo civil colaborativo para
alavancar a educação. In: SIMPOSIO
BRASILEIRO DE SISTEMAS DE
INFORMAÇÃO (SBSI), 2019, Aracaju. Anais
Estendidos do Simpósio Brasileiro de Sistemas
de Informação. Porto Alegre: SBC, 2019. �.

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 70–76, set/dez 2025
https://revistarsc.com.br/ojs/index.php/rsc

75

https://revistarsc.com.br/ojs/index.php/rsc


145-148. DOI:
https://doi.org/10.5753/sbsi.2019.7460.

[7] COLAÇO JÚNIOR, Methanias. IA Para A
Galera Toda: Agentes e Inovação Experimental
Sem Código. Edição independente, 2025.

[8] SCHLEGEL, Aaron. Containerizing ETL Data
Pipelines with Docker. Medium, 2019.
Disponível em:
https://medium.com/@AaronSchlegel/containerizing-
etl-data-pipelines-with-docker-9e30de90a313.
Acesso em: 15 abr. 2025.

[9] KULAL, Akshatha. Building an Automated
ETL Pipeline with Docker, Jenkins, Logstash,
Elasticsearch, and Kibana. Medium, 2024.
Disponível em:
https://medium.com/@akshathakulal/building-
an-automated-etl-pipeline-with-docker-jenkins-
logstash-elasticsearch-and-kibana-6603a118816c.
Acesso em: 20 mai. 2025.

[10] PAYPRO GLOBAL. Docker vs Kubernetes:
Choosing the Right Container Strategy. 2024.
Disponível em:
https://payproglobal.com/blog/docker-vs-
kubernetes/. Acesso em: 10 jun. 2025.

[11] KAUR, S.; KAUR, K. Analysis of the Impact of
Refactoring on Software Quality: A Case Study.
International Journal of Software Engineering
and Its Applications, v. 10, n. 11, p. 1-14, 2016.

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 70–76, set/dez 2025
https://revistarsc.com.br/ojs/index.php/rsc

76

https://revistarsc.com.br/ojs/index.php/rsc

	Introdução
	Base Conceitual
	Trabalhos Relacionados
	Estudo de Caso
	Definição do Objetivo
	Planejamento
	Instrumentação
	DUCA Antes da Refatoração
	Métricas
	Metodologia de Avaliação

	Operação
	Preparação
	Execução


	Resultados e Discussão
	Tempo de Implantação
	Manutenibilidade e Complexidade do Código
	Resultados Qualitativos

	Conclusão
	References

