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Abstract

O presente artigo apresenta um algoritmo de andlise de
similaridade de mensagens de descricdo de erro de asserts em
testes unitdrios gerados por uma ferramenta de desenvolvimento
proprio e as LLMs (Large Language Models) ChatGPT e Gemini, bem
como os ganhos obtidos através do uso de técnicas multi-thread
neste algoritmo. Os resultados indicam uma similaridade média de
71% para o ChatGPT e 74% para o Gemini, sugerindo que a
ferramenta pode ser uma boa alternativa para a geragdo de
mensagens de erro de assert, mas com a vantagem de ser mais
rapido, apresentar resultados mais constantes e menos erros de
compilagdo. Quanto ao uso das técnicas de multi-thread, obteve-
se um ganho de até 7,53 vezes com 8 threads em relagdo a
execuc¢do sequencial do algoritmo.

Keywords
Testes unitarios, Assertion Roulette, Large Language Models,
Multithread

1 Introducdo

O uso de testes de unidade como uma forma de aferir e aprimorar
a qualidade de software é uma pratica que vem ganhanado
aderéncia no mercado [3]. Apesar disso, a qualidade dos testes de
unidade também deve ser levada em consideragao, do contrario, a
manutencao do codigo de producgdo pode se tornar dificil e confusa
[6].

Na literatura, dentro dos test smells, classificagdo de mas
praticas em testes de unidade, encontra-se o assertion roulette,
que ocorre quando um caso de teste possui multiplos asserts
(afirmagBes) sem uma mensagem descritiva, que auxilia o
programador em caso de falha no teste [8]. Apesar de ser um dos
test smells que mais afetam a legibilidade do cddigo [1], existem
poucas ferramentas que realizam tanto a identificagdo quanto a
refatoragdo do assertion roulette [2][7].

Para superar essas limitagdes, uma ferramenta foi criada como
um trabalho de conclusdo de curso. Essa ferramenta gera
mensagens descritivas para asserts em testes unitarios de forma
automatica com base no tipo de assert e nos dados envolvidos na
afirmacgdo. A ferramenta é compativel com asserts em JUnit 4 e 5.

Para validar a eficicia da ferramenta, foram realizados
experimentos comparativos de similaridade entre as mensagens
geradas por ela e aquelas produzidas por LLMs (Large Language

1 https://openai.com/index/chatgpt/
2 https://gemini.google.com/?hl=pt-BR

Models, ou Grandes Modelos de Linguagem), como ChatGPT e
Gemini. Durante esses experimentos, observou-se que o algoritmo
de comparagdo apresentava um tempo de execugdo elevado,
evidenciando a necessidade de melhorias de desempenho. Essa
limitagdo destacou uma oportunidade para implementar técnicas
de multi-threading, visando otimizar a execugdo e reduzir
significativamente o tempo de processamento.

1.1 Objetivos

O presente trabalho tem como objetivo apresentar os resultados
da andlise de similaridade entre as mensagens geradas pela
ferramenta de descri¢do de asserts e aquelas produzidas por LLMs
(Large Language Models), como ChatGPT e Gemini. Além disso,
busca destacar os ganhos de desempenho obtidos com a aplicagdo
de técnicas de multi-threading, que foram implementadas para
otimizar o tempo de execugdo do algoritmo comparativo. A anélise
também aborda os possiveis pros e contras da ferramenta, bem
como possiveis pontos de melhoria e trabalhos futuros.’

2 Metodologia

O experimento consistiu em duas partes: a comparagdo de
similaridade das mensagens de descri¢do de assert e a medida de
desempenho para execugées com 1, 4 e 8 threads.

Para a primeira etapa do experimento, as LLMs selecionadas
foram o ChatGPT!e o Gemini? por sua relevancia e utilizagdo em
outros trabalhos [9]. Apesar disso, foram realizadas tentativas com
o Ilamas, modelo gratuito, mas que se mostrou lento demais para
os testes. De forma mais especifica, os modelos utilizados foram o
gpt-3.5-turbo e o gemini-1.5-flash, por serem duas alternativas
populares e de propésito geral.

Utilizou-se de praticas comuns elaboragdo de prompts utilizadas
na literatura para interagir com as LLMs [9] [4]. Esta consisite em
montar o prompt em duas partes, uma que contextualiza a LLM
quanto ao cenario e ao papel que ela deve assumir (role ou
contexto), e outra que instrui ela quanto ao que deve fazer de
forma clara e as expectativas da tarefa (instrugdo) [9]. A string de
contextualizagdo e a base da mensagem de instrugdo estdo
exibidos na Figura 1. Note que a mensagem de instrucdo ndo esta
completa porque durante a execugdo os asserts sdo concatenados
para formar a mensagem final.

Para a comparacgdo entre as mensagens geradas pela ferramenta
com as geradas pelas LLMs, utilizou-se do algoritmo Jaro de
similaridade de strings por sua capacidade de gerar scores com

3 https://www.llama.com/
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qualidade [5]. O resultado do algoritmo Jaro é uma numeragao
entre 0 e 1 que indica o qudo similar duas strings sdo, com 0
indicando que as strings ndo sdo nem um pouco similares e 1
indicando serem idénticas. Optou-se pelo uso de uma
implementagdo pronta do algoritmo, disponivel através da

biblioteca python jaro-winkler 4

Ja para a segunda parte do experimento, a andlise de
desempenho da ferramenta considerou a média de tempo de trés
execucoes, levando em conta os 10 primeiros asserts de cada um
dos projetos analisados. Ao todo, foram utilizados os valores de
uma, quatro e oito threads, limitadas pelo nimero de nucleos do
computador do autor. Apenas trés execugdes foram realizadas por
limitagdbes de tempo, tendo em vista que para algumas das
execugdes leva-se mais de 20 minutos para o fim do experimento.
Além disso, a escolha do uso de 10 asserts por projeto se deu por
limitagGes do numero de requisicdes diarias permitidas pelas
LLMs>.

Ao todo, foram considerados 32 projetos para o experimento,
que tiveram como critério de seleg¢do utilizarem Java e Junit, serem
open source e possuirem uma quantidade razoavel de asserts. A
lista de projetos utilizados esta presente na Tabela 1. Ndo obstante,
foram levados em consideragdo apenas os tipos de assert que a
ferramenta geradora de descri¢des suporta, que estdo presentes na
Tabela 2.

Table 1: Projetos Open Source

# Projeto Versdo
1 Avro 1.111
2 Cucumber JVM 7.11.1
3 Disruptor 4.0.0.RC1
4 Dropwizard 2.14
5 Fastjson2 2.0.24
6 GraphHopper 6.2
7 Jasypt Spring Boot 3.0.5
8 JavaParser 3.25.1
9 JDA 5.0.0-beta.5
10 JetCache 2.7.3
11 JFreeChart 1.5.3
12 Jodd 5.3.0
13 Jsoup 1.15.3
14 Liquibase 4.19.1
15 Logback 1.4.5
16 OpenPDF 1.3.30
17 OptaPlanner 9.35.0.Beta2
18 POI-TL 1.12.1
19 Recaf 2.21.13
20 Redisson 3.19.3
21 RipMe 1.7.95
22 RoaringBitmap 0.9.39
23 RSocket Java 1.1.3

4 https://pypi.org/project/jaro-winkler/

24 | Simple Binary Encoding 1.27.0
25 Simplify 1.3.0
26 Spring Batch 5.0.1
27 Spring Data JPA 3.0.3
28 SpringDoc OpenAPI 2.0.2
29 TableSaw 0.43.1
30 Thymeleaf | 3.1.1.RELEASE

31 Unirest Java 3.14.2
32 WireMock 3.0.0-beta.7

Fonte: (autoria propria, 2024)

O ambiente de desenvolvimento consistiu em um computador
com um processador intel core i5 6400, 16 GB de RAM 2666mhz e
sistema operacional Linux Mint. Ndo obstante, durante os testes,
todos os programas aplicativos ndo essenciais para a execugdo
foram fechados. Apesar disso, os testes ndo aconteceram em um
ambiente isolado, portanto processos do sistema operacional,
incluindo a interface grafica, mantiveram-se executando, o que
pode ter afetado os testes. Ambos os testes foram executados no
dia 5 de dezembro de 2024.

Table 2: Tipos de assert considerados para o experimento

JUnit 4 JUnit 5
assertAll

assertArrayEquals

assertEquals assertArrayEquals

assertFalse assertEquals

assertNotEquals assertDoesNotThrow
assertNotNull assertFalse
assertNotSame assertlterableEquals
assertNull assertLinesMatch
assertSame assertNotEquals
assertThat assertNotNull
assertThrows assertNotSame
assertTrue assertinstanceOf
fail assertNull
assertSame

assertThrows

assertThrowsExactly

assertTimeout

assertTimeoutPreemptively

assertTrue

fail

Fonte: (autoria prépria, 2024)

5 https://platform.openai.com/docs/guides/rate-limits?context=tier-one
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Figure 1: Formato de prompt utilizado nas LLMs

Fonte: (Autoria propria, 2024)

3 Resultados
A presente secdo apresenta os resultados dos dois experimentos,
que utilizam o mesmo cdodigo fonte python presente na Figura 2.
Note que a fungdo acessar_arquivo realiza as operagdes de geragao
de mensagens por LLMs e comparagdo de similaridade com as
descrigcOes da ferramenta geradora, lidas de um arquivo. A linha 20
e 21 realizam a geragdo das mensagens através de chamadas as
APIs do ChatGPT e Gemini, respectivamente. Por limitagdo de
espaco, essas chamadas omitidas.

A fungdo main, por sua vez, realiza a chamada da fungdo
acessar_arquivo e aplica as técnicas de multi-thread por meio do
método ThreadPoolExecutor da concurrent.futures, biblioteca

padrdo de concorréncia no python 6. Observe que a quantidade de
threads utilizada é passada por pardametro na linha 52, e
corresponde ao argumento de linha de comando lido na linha 42.

As demais subse¢des apresentam e discutem os resultados de

cada experimento.

3.1 Similaridade das Descri¢Ges de Assert

Com o intuito de verificar a razoabilidade das mensagens de
descricdo de assert geradas pela ferramenta, realizou-se um
experimento comparativo entre elas e as geradas por Large
Language Models (LLM, grandes modelos de linguagem). Os
resultados de similarida estdo presentes na Tabela 3.

Nota-se que, de forma geral, as mensagens geradas pela
ferramenta apresentam uma similaridade alta com as mensagens
geradas por LLMs, com médias gerais de 0,71 para o ChatGPT e 0,74
para o Gemini. Tais resultados podem indicar uma similaridade
moderadamente boa, e que as mensagens geradas podem possuir
uma coeréncia razodvel em termos do vocabulario utilizado.

Quando observado os resultados por projeto, nota-se que o
ChatGPT variou sua similaridade entre 0,58 (Logback) e 0,79
(Liquibase), enquanto o Gemini variou menos com 0,68 (Jsoup) e
0,77 (Simplify, Optaplanner, Rsocket Java, Unirest Java). Esse
resultado sugere que os modelos podem ter dificuldade para gerar
mensagens a depender do projeto e de seu contexto.

Ndo obstante, destaca-se que o Gemini apresentou
similaridades ligeiramente maiores que as do ChatGPT, bem como
uma variagdo menor entre projetos. Ainda que pequena a variagao,
ela demonstra as diferengas de treinamento que os modelos tém.
Apesar disso, ressalta-se que ao analisar as respostas obtidas pelas
LLMs, notouse que em alguns casos, as mensagens nao tém relagdo
nenhuma com o assert original, ndo seguem a sintaxe Java ou

6 https://docs.python.org/3/library/concurrent.futures.html

apresentam uma mensagem genérica como "a execugdo falhou". A
ferramenta, por outro lado, tende a apresentar resultados
constantes independentemente do projeto, tendo em vista que a
|6gica para criagdo das mensagens personalizadas é fixa e baseada
na sintaxe da linguagem Java.

De forma geral, os resultados indicam que a ferramenta gera
mensagens razoavelmente similares as geradas por LLMs. Portanto,
pode-se concluir que os resultados gerados pela ferramenta sdo
um bom ponto de partida ao ter em vista que os grandes modelos
de linguagem foram treinados com dados reais, eles podem
possivelmente representar as praticas adotadas por projetos reais
e pela literatura. No entanto, conforme mencionado
anteriormente, as respostas geradas pelos modelos podem ndo
descrever corretamente os asserts a que originaram, além de
possivelmente ndo compilar sob a sintaxe Java. Outras limitagdes
das LLMs sdo o fato delas serem pagas (a0 menos nos planos
utilizados) e dos tempos de execugdo serem maiores do que o da
ferramenta.

Esses resultados abrem margem para outras discussdes e
trabalhos futuros, dentre os quais destaca-se a realizagdo de
experimentos empiricos com usuarios reais para verificar a
validade das mensagens geradas pela ferramenta e comparar seu
nivel satisfagdo em relagdo a mensagens geradas por LLMs.

3.2 Desempenho Multithread
Os resultados das execugBes com uma, quatro e oito threads
podem ser observadas nas Tabelas 4, 5, e 6, respectivamente.
Nota-se que os resultados indicam um impacto positivo da
utilizagdo de multi-threading no desempenho do algoritmo
comparativo. Quando executado em uma Unica thread (Tabela 4),
o tempo médio de execugao da comparacao foi de 1379 segundos,
o que equivale a 23 minutos, além de um tempo médio por arquivo
de 39 segundos. Esse desempenho inicial com uma thread
representa a execugdo sequencial do algoritmo de comparacgdo e
serve de ponto de referéncia para as execugdes multi-thread.
Com a utilizagdo de quatro Threads (Tabela 5), obteve-se uma
reducdo significativa no tempo total de execugdo, que passou para
uma média de 351 segundos, ou cerca de 6 minutos, com o tempo
médio por arquivo em torno de 10 segundos. Esse resultado indica
um speedup de cerca de 3,92, ou seja, uma melhoria de quase
quatro vezes em relagdo a execugdo sequencial.
Ao elevar o nimero de threads para oito (Tabela 6), observa-se um
resultado ainda melhor, com o tempo médio total caindo para 183
segundos (3 minutos) e o tempo médio por arquivo por volta de 5
segundos. Esse resultado indica uma melhora de
aproximadamente 7,53 em relagdo a execugdao sequencial,
indicando que o aumento do paralelismo para 8 threads continua
a trazer beneficios nessas condigdes.
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Figure 2: Codigo utilizado pelos experimentos

processar_arqui\ arquivo, num_asserts

inicio_tempo time.time()

asserts ler_n_linhas_c str SSERT I R + d m_asse
conteudo_ferramenta r g F/ E )IR + nome_arquivo

conteudo_ferramenta:

turn None

similaridade_chatgpt
similaridade_gemini

i, assert_original in enumerate(asserts.splitlin
mensagem_ferramenta '

mensagem_ferramenta conteudo_ferramenta[i].

instrucao U

mensagem_chatgpt = instrucao).strip()
mensagem_gemini = g t 0 , instrucao). O)
similaridade_chatgpt += jaro.jaro_n c(mensagem_ferramenta, mensagem_chatgpt)
similaridade_gemini += jaro.jaro_metric(mensagem_ferramenta, mensagem_gemini)

time.s elay)

similaridade_chatgpt
similaridade_gemini

atgpt:.2f} & {similaridade_gemini:.2f

saida f'{nome_arquivo} & {similaridade_ch
te_to_file(saida, ARQ ABELA_RESULTADOS, 'a')

fim_tempo time.time()
tempo_total fim_tempo inicio_tempo
print(f"tempo {nome_arquivo}: {tempo_total

tempo_total

main():

num_threads sys.argv[1]

print(f"\r Execucao com {num_threads} threads
start_time = time.time()

num_asserts_maximo

rate_limit_per_minute = 2

delay = ¢ rate_limit_per_minute

arquivos = os.listdir(

1 ThreadPoolExecutor(max L 15 executor:

futures = [
executor.submit(proc ar_arquivo, nome_arquivo, num_asserts_maximo, delay)
for nome_arquivo arquivos

end_time time.time()

total end_time - start_time

print(f"Tempo medio por arquivo com {num_threads} threads: {total/len(arquivos):.2f}")
print(f"Tempo total com {num_threads} threads: {total:.2f}")

Fonte: (Autoria propria, 2024)
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Table 3: Média de similaridade de mensagens de assert geradas

por LLMs em relagdo a ferramenta

Projeto Média sim. Chatgpt Média sim. Gemini

Disruptor 0.76 0.75
Logback 0.58 0.75
Cucumber JVM 0.62 0.71
Jetcache 0.74 0.70
FastJson2 0.73 0.74
Jasypt Spring Boot 0.70 0.75
Tablesaw 0.70 0.77
Liquibase 0.79 0.71
Redisson 0.72 0.73
RoaringBitmap 0.75 0.73
Unirest Java 0.76 0.77
Jsoup 0.65 0.68
Javaparser 0.71 0.71
Avro 0.72 0.71
Wiremock 0.76 0.70
Spring Data 0.72 0.72
OpenPDF 0.70 0.72
Spring Batch 0.74 0.73
Thymeleaf 0.74 0.76
Rsocket Java 0.72 0.77
Optaplanner 0.71 0.77
Jodd 0.75 0.76
Simple Binary Encoding 0.78 0.72
JDA 0.67 0.75
Dropwizard 0.74 0.75
Jfreechart 0.67 0.74
Graphhopper 0.70 0.74
Poi-tl 0.76 0.74
Ripme 0.69 0.72
Springdoc Openapi 0.73 0.70
Recaf 0.76 0.72
Simplify 0.62 0.77
Media 0.71 0.74

Fonte: (autoria prépria, 2024)

Table 4: Tempos de execugao com uma thread

Execugdo | Tempo total de execugdo(s) Tempo médio por arquivo (s)

1 1381.44 39.47
2 1378.39 39.38
3 1379.65 39.42
Média 1379.82 39.42

Fonte: (autoria propria, 2024)

Table 5: Tempos de execugdo com quatro threads

Execugdo | Tempo total de execugdo(s) Tempo médio por arquivo (s)

1 351.88 10.05
2 347.28 9.92
3 355.40 10.15
Média 351.52 10.04

Fonte: (autoria prépria, 2024)

Table 6: Tempos de execugdo com oito threads

Execugdo | Tempo total de execugdo(s) Tempo médio por arquivo (s)

1 181.92 5.20
2 178.51 5.10
3 189.10 5.40
Média 183.18 5.23

Fonte: (autoria prépria, 2024)

Do ponto de vista do experimento de comparagdo de
similaridade, a diminuigdo do tempo de execu¢do obtido pelo
aumento do numero de threads foi satisfatdrio, pois representou
um ganho de 86.74%, no caso da aplicacdo de 8 threads.

Apesar disso, o algoritmo ainda apresenta oportunidade de
melhoria nos tempos de execugdo através da inclusdo de
paralelismo nas chamadas para APIs, ou seja, execugdo
concorrente das chamadas ao ChatGPT e ao Gemini, bem como
através da redugdo dos timeouts entre as chamadas das LLMs
através do uso de requisicdes em lote, recurso disponivel em
ambas as APIs. Além disso, novos trabalhos podem verificar o limite
de ganho que o aumento de threads representa para os tempos de
execuc¢do, que tendem a ser limitados pela por¢do nado paralela do
cddigo.

4 Consideragdes Finais

O presente artigo teve como objetivo apresentar analisar a
similaridade das mensagens de assert da ferramenta de descri¢do
de asserts e as geradas por LLM, bem como os ganhos obtidos pelo
uso de multi-threading.

Quanto a analise de similaridade, os resultados indicam que a
ferramenta gera mensagens cerca de 70% similares as geradas por
LLMs, mas possui vantagens em relagdo ao primeiro por ser mais
constante quanto ao formato das mensagens, sempre seguir a
sintaxe java corretamente, apresentar tempos de execugdo menor
independentemente da quantidade de asserts e por ndo ser pago.

Ja quanto a aplicagdo de técnicas de multi-thread, os resultados
indicam uma diminuigdo consideravel do tempo de execugdo, que
representa um ganho de até 7,53 vezes em relagdo a execugdo
sequencial quando 8 threads sdo aplicadas.

Apesar disso, o presente artigo abre margem para trabalhos
futuros, que incluem a realizagdo de experimentos empiricos com
pessoas reais para verificar a validade das mensagens de assert
geradas pela ferramenta, a inclusdo de paralelismo entre as
chamadas das APIs das LLMs e o uso de chamadas em lote visando
diminuir ainda mais o tempo de execugdo do algoritmo de
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comparagdo e a verificagdo do ganho maximo que a adi¢do de
threads traria.
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