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Abstract 
O presente artigo apresenta um algoritmo de análise de 

similaridade de mensagens de descrição de erro de asserts em 

testes unitários gerados por uma ferramenta de desenvolvimento 

próprio e as LLMs (Large Language Models) ChatGPT e Gemini, bem 

como os ganhos obtidos através do uso de técnicas multi-thread 

neste algoritmo. Os resultados indicam uma similaridade média de 

71% para o ChatGPT e 74% para o Gemini, sugerindo que a 

ferramenta pode ser uma boa alternativa para a geração de 

mensagens de erro de assert, mas com a vantagem de ser mais 

rápido, apresentar resultados mais constantes e menos erros de 

compilação. Quanto ao uso das técnicas de multi-thread, obteve-

se um ganho de até 7,53 vezes com 8 threads em relação à 

execução sequencial do algoritmo. 
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1 Introdução 
O uso de testes de unidade como uma forma de aferir e aprimorar 

a qualidade de software é uma prática que vem ganhanado 

aderência no mercado [3]. Apesar disso, a qualidade dos testes de 

unidade também deve ser levada em consideração, do contrário, a 

manutenção do código de produção pode se tornar difícil e confusa 

[6]. 

Na literatura, dentro dos test smells, classificação de más 

práticas em testes de unidade, encontra-se o assertion roulette, 

que ocorre quando um caso de teste possui múltiplos asserts 

(afirmações) sem uma mensagem descritiva, que auxilia o 

programador em caso de falha no teste [8]. Apesar de ser um dos 

test smells que mais afetam a legibilidade do código [1], existem 

poucas ferramentas que realizam tanto a identificação quanto a 

refatoração do assertion roulette [2][7]. 

Para superar essas limitações, uma ferramenta foi criada como 

um trabalho de conclusão de curso. Essa ferramenta gera 

mensagens descritivas para asserts em testes unitários de forma 

automática com base no tipo de assert e nos dados envolvidos na 

afirmação. A ferramenta é compatível com asserts em JUnit 4 e 5. 

Para validar a eficácia da ferramenta, foram realizados 

experimentos comparativos de similaridade entre as mensagens 

geradas por ela e aquelas produzidas por LLMs (Large Language 

 
1 https://openai.com/index/chatgpt/ 
2 https://gemini.google.com/?hl=pt-BR 

Models, ou Grandes Modelos de Linguagem), como ChatGPT e 

Gemini. Durante esses experimentos, observou-se que o algoritmo 

de comparação apresentava um tempo de execução elevado, 

evidenciando a necessidade de melhorias de desempenho. Essa 

limitação destacou uma oportunidade para implementar técnicas 

de multi-threading, visando otimizar a execução e reduzir 

significativamente o tempo de processamento. 

1.1 Objetivos 
O presente trabalho tem como objetivo apresentar os resultados 

da análise de similaridade entre as mensagens geradas pela 

ferramenta de descrição de asserts e aquelas produzidas por LLMs 

(Large Language Models), como ChatGPT e Gemini. Além disso, 

busca destacar os ganhos de desempenho obtidos com a aplicação 

de técnicas de multi-threading, que foram implementadas para 

otimizar o tempo de execução do algoritmo comparativo. A análise 

também aborda os possíveis prós e contras da ferramenta, bem 

como possíveis pontos de melhoria e trabalhos futuros.’ 

2 Metodologia 
O experimento consistiu em duas partes: a comparação de 
similaridade das mensagens de descrição de assert e a medida de 
desempenho para execuções com 1, 4 e 8 threads. 

Para a primeira etapa do experimento, as LLMs selecionadas 

foram o ChatGPT1 e o Gemini2 por sua relevância e utilização em 

outros trabalhos [9]. Apesar disso, foram realizadas tentativas com 

o llama3, modelo gratuito, mas que se mostrou lento demais para 

os testes. De forma mais específica, os modelos utilizados foram o 

gpt-3.5-turbo e o gemini-1.5-flash, por serem duas alternativas 

populares e de propósito geral. 

Utilizou-se de práticas comuns elaboração de prompts utilizadas 

na literatura para interagir com as LLMs [9] [4]. Esta consisite em 

montar o prompt em duas partes, uma que contextualiza a LLM 

quanto ao cenário e ao papel que ela deve assumir (role ou 

contexto), e outra que instrui ela quanto ao que deve fazer de 

forma clara e as expectativas da tarefa (instrução) [9]. A string de 

contextualização e a base da mensagem de instrução estão 

exibidos na Figura 1. Note que a mensagem de instrução não está 

completa porque durante a execução os asserts são concatenados 

para formar a mensagem final. 

Para a comparação entre as mensagens geradas pela ferramenta 

com as geradas pelas LLMs, utilizou-se do algoritmo Jaro de 

similaridade de strings por sua capacidade de gerar scores com 

3 https://www.llama.com/ 

https://openai.com/index/chatgpt/
https://gemini.google.com/?hl=pt-BR
https://www.llama.com/
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qualidade [5]. O resultado do algoritmo Jaro é uma numeração 

entre 0 e 1 que indica o quão similar duas strings são, com 0 

indicando que as strings não são nem um pouco similares e 1 

indicando serem idênticas. Optou-se pelo uso de uma 

implementação pronta do algoritmo, disponível através da 

biblioteca python jaro-winkler 4. 

Já para a segunda parte do experimento, a análise de 

desempenho da ferramenta considerou a média de tempo de três 

execuções, levando em conta os 10 primeiros asserts de cada um 

dos projetos analisados. Ao todo, foram utilizados os valores de 

uma, quatro e oito threads, limitadas pelo número de núcleos do 

computador do autor. Apenas três execuções foram realizadas por 

limitações de tempo, tendo em vista que para algumas das 

execuções leva-se mais de 20 minutos para o fim do experimento. 

Além disso, a escolha do uso de 10 asserts por projeto se deu por 

limitações do número de requisições diárias permitidas pelas 

LLMs5. 

Ao todo, foram considerados 32 projetos para o experimento, 

que tiveram como critério de seleção utilizarem Java e Junit, serem 

open source e possuirem uma quantidade razoável de asserts. A 

lista de projetos utilizados está presente na Tabela 1. Não obstante, 

foram levados em consideração apenas os tipos de assert que a 

ferramenta geradora de descrições suporta, que estão presentes na 

Tabela 2. 

Table 1: Projetos Open Source 

# Projeto Versão 

1 Avro 1.11.1 

2 Cucumber JVM 7.11.1 

3 Disruptor 4.0.0.RC1 

4 Dropwizard 2.1.4 

5 Fastjson2 2.0.24 

6 GraphHopper 6.2 

7 Jasypt Spring Boot 3.0.5 

8 JavaParser 3.25.1 

9 JDA 5.0.0-beta.5 

10 JetCache 2.7.3 

11 JFreeChart 1.5.3 

12 Jodd 5.3.0 

13 Jsoup 1.15.3 

14 Liquibase 4.19.1 

15 Logback 1.4.5 

16 OpenPDF 1.3.30 

17 OptaPlanner 9.35.0.Beta2 

18 POI-TL 1.12.1 

19 Recaf 2.21.13 

20 Redisson 3.19.3 

21 RipMe 1.7.95 

22 RoaringBitmap 0.9.39 

23 RSocket Java 1.1.3 

 
4 https://pypi.org/project/jaro-winkler/ 

24 Simple Binary Encoding 1.27.0 

25 Simplify 1.3.0 

26 Spring Batch 5.0.1 

27 Spring Data JPA 3.0.3 

28 SpringDoc OpenAPI 2.0.2 

29 TableSaw 0.43.1 

30 Thymeleaf 3.1.1.RELEASE 

31 Unirest Java 3.14.2 

32 WireMock 3.0.0-beta.7 

Fonte: (autoria própria, 2024) 

O ambiente de desenvolvimento consistiu em um computador 

com um processador intel core i5 6400, 16 GB de RAM 2666mhz e 

sistema operacional Linux Mint. Não obstante, durante os testes, 

todos os programas aplicativos não essenciais para a execução 

foram fechados. Apesar disso, os testes não aconteceram em um 

ambiente isolado, portanto processos do sistema operacional, 

incluindo a interface gráfica, mantiveram-se executando, o que 

pode ter afetado os testes. Ambos os testes foram executados no 

dia 5 de dezembro de 2024. 

Table 2: Tipos de assert considerados para o experimento  

JUnit 4 JUnit 5 

assertArrayEquals assertAll 

assertEquals assertArrayEquals 

assertFalse assertEquals 

assertNotEquals assertDoesNotThrow 

assertNotNull assertFalse 

assertNotSame assertIterableEquals 

assertNull assertLinesMatch 

assertSame assertNotEquals 

assertThat assertNotNull 

assertThrows assertNotSame 

assertTrue assertInstanceOf 

fail assertNull 

 assertSame 

 assertThrows 

 assertThrowsExactly 

 assertTimeout 

 assertTimeoutPreemptively 

 assertTrue 

 fail 

Fonte: (autoria própria, 2024) 

5 https://platform.openai.com/docs/guides/rate-limits?context=tier-one 

https://pypi.org/project/jaro-winkler/
https://platform.openai.com/docs/guides/rate-limits?context=tier-one
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Figure 1: Formato de prompt utilizado nas LLMs 

 

Fonte: (Autoria própria, 2024) 

3 Resultados 
A presente seção apresenta os resultados dos dois experimentos, 

que utilizam o mesmo código fonte python presente na Figura 2. 

Note que a função acessar_arquivo realiza as operações de geração 

de mensagens por LLMs e comparação de similaridade com as 

descrições da ferramenta geradora, lidas de um arquivo. A linha 20 

e 21 realizam a geração das mensagens através de chamadas às 

APIs do ChatGPT e Gemini, respectivamente. Por limitação de 

espaço, essas chamadas omitidas. 

A função main, por sua vez, realiza a chamada da função 

acessar_arquivo e aplica as técnicas de multi-thread por meio do 

método ThreadPoolExecutor da concurrent.futures, biblioteca 

padrão de concorrência no python 6. Observe que a quantidade de 

threads utilizada é passada por parâmetro na linha 52, e 

corresponde ao argumento de linha de comando lido na linha 42. 

As demais subseções apresentam e discutem os resultados de 

cada experimento. 

3.1 Similaridade das Descrições de Assert 
Com o intuito de verificar a razoabilidade das mensagens de 
descrição de assert geradas pela ferramenta, realizou-se um 
experimento comparativo entre elas e as geradas por Large 
Language Models (LLM, grandes modelos de linguagem). Os 
resultados de similarida estão presentes na Tabela 3. 

Nota-se que, de forma geral, as mensagens geradas pela 

ferramenta apresentam uma similaridade alta com as mensagens 

geradas por LLMs, com médias gerais de 0,71 para o ChatGPT e 0,74 

para o Gemini. Tais resultados podem indicar uma similaridade 

moderadamente boa, e que as mensagens geradas podem possuir 

uma coerência razoável em termos do vocabulário utilizado. 

Quando observado os resultados por projeto, nota-se que o 

ChatGPT variou sua similaridade entre 0,58 (Logback) e 0,79 

(Liquibase), enquanto o Gemini variou menos com 0,68 (Jsoup) e 

0,77 (Simplify, Optaplanner, Rsocket Java, Unirest Java). Esse 

resultado sugere que os modelos podem ter dificuldade para gerar 

mensagens a depender do projeto e de seu contexto. 

Não obstante, destaca-se que o Gemini apresentou 

similaridades ligeiramente maiores que as do ChatGPT, bem como 

uma variação menor entre projetos. Ainda que pequena a variação, 

ela demonstra as diferenças de treinamento que os modelos têm. 

Apesar disso, ressalta-se que ao analisar as respostas obtidas pelas 

LLMs, notouse que em alguns casos, as mensagens não têm relação 

nenhuma com o assert original, não seguem a sintaxe Java ou 

 
6 https://docs.python.org/3/library/concurrent.futures.html 

apresentam uma mensagem genérica como "a execução falhou". A 

ferramenta, por outro lado, tende a apresentar resultados 

constantes independentemente do projeto, tendo em vista que a 

lógica para criação das mensagens personalizadas é fixa e baseada 

na sintaxe da linguagem Java. 

De forma geral, os resultados indicam que a ferramenta gera 

mensagens razoavelmente similares às geradas por LLMs. Portanto, 

pode-se concluir que os resultados gerados pela ferramenta são 

um bom ponto de partida ao ter em vista que os grandes modelos 

de linguagem foram treinados com dados reais, eles podem 

possivelmente representar as práticas adotadas por projetos reais 

e pela literatura. No entanto, conforme mencionado 

anteriormente, as respostas geradas pelos modelos podem não 

descrever corretamente os asserts a que originaram, além de 

possivelmente não compilar sob a sintaxe Java. Outras limitações 

das LLMs são o fato delas serem pagas (ao menos nos planos 

utilizados) e dos tempos de execução serem maiores do que o da 

ferramenta. 

Esses resultados abrem margem para outras discussões e 

trabalhos futuros, dentre os quais destaca-se a realização de 

experimentos empíricos com usuários reais para verificar a 

validade das mensagens geradas pela ferramenta e comparar seu 

nível satisfação em relação a mensagens geradas por LLMs. 

 

3.2 Desempenho Multithread 
Os resultados das execuções com uma, quatro e oito threads 

podem ser observadas nas Tabelas 4, 5, e 6, respectivamente. 

Nota-se que os resultados indicam um impacto positivo da 

utilização de multi-threading no desempenho do algoritmo 

comparativo. Quando executado em uma única thread (Tabela 4), 

o tempo médio de execução da comparação foi de 1379 segundos, 

o que equivale a 23 minutos, além de um tempo médio por arquivo 

de 39 segundos. Esse desempenho inicial com uma thread 

representa a execução sequencial do algoritmo de comparação e 

serve de ponto de referência para as execuções multi-thread. 

Com a utilização de quatro Threads (Tabela 5), obteve-se uma 

redução significativa no tempo total de execução, que passou para 

uma média de 351 segundos, ou cerca de 6 minutos, com o tempo 

médio por arquivo em torno de 10 segundos. Esse resultado indica 

um speedup de cerca de 3,92, ou seja, uma melhoria de quase 

quatro vezes em relação à execução sequencial. 

Ao elevar o número de threads para oito (Tabela 6), observa-se um 
resultado ainda melhor, com o tempo médio total caindo para 183 
segundos (3 minutos) e o tempo médio por arquivo por volta de 5 
segundos. Esse resultado indica uma melhora de 
aproximadamente 7,53 em relação a execução sequencial, 
indicando que o aumento do paralelismo para 8 threads continua 
a trazer benefícios nessas condições. 

 

 

  

https://docs.python.org/3/library/concurrent.futures.html
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Figure 2: Código utilizado pelos experimentos 

 

Fonte: (Autoria própria, 2024) 
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Table 3: Média de similaridade de mensagens de assert geradas 

por LLMs em relação à ferramenta 

Projeto Média sim. Chatgpt Média sim. Gemini 

Disruptor 0.76 0.75 

Logback 0.58 0.75 

Cucumber JVM 0.62 0.71 

Jetcache 0.74 0.70 

FastJson2 0.73 0.74 

Jasypt Spring Boot 0.70 0.75 

Tablesaw 0.70 0.77 

Liquibase 0.79 0.71 

Redisson 0.72 0.73 

RoaringBitmap 0.75 0.73 

Unirest Java 0.76 0.77 

Jsoup 0.65 0.68 

Javaparser 0.71 0.71 

Avro 0.72 0.71 

Wiremock 0.76 0.70 

Spring Data 0.72 0.72 

OpenPDF 0.70 0.72 

Spring Batch 0.74 0.73 

Thymeleaf 0.74 0.76 

Rsocket Java 0.72 0.77 

Optaplanner 0.71 0.77 

Jodd 0.75 0.76 

Simple Binary Encoding 0.78 0.72 

JDA 0.67 0.75 

Dropwizard 0.74 0.75 

Jfreechart 0.67 0.74 

Graphhopper 0.70 0.74 

Poi-tl 0.76 0.74 

Ripme 0.69 0.72 

Springdoc Openapi 0.73 0.70 

Recaf 0.76 0.72 

Simplify 0.62 0.77 

Media 0.71 0.74 

Fonte: (autoria própria, 2024) 

Table 4: Tempos de execução com uma thread 

Execução Tempo total de execução(s) Tempo médio por arquivo (s) 

1 1381.44 39.47 
2 1378.39 39.38 
3 1379.65 39.42 

Média 1379.82 39.42 

Fonte: (autoria própria, 2024) 

Table 5: Tempos de execução com quatro threads 

Execução Tempo total de execução(s) Tempo médio por arquivo (s) 

1 351.88 10.05 
2 347.28 9.92 
3 355.40 10.15 

Média 351.52 10.04 

Fonte: (autoria própria, 2024) 

Table 6: Tempos de execução com oito threads 

Execução Tempo total de execução(s) Tempo médio por arquivo (s) 

1 181.92 5.20 
2 178.51 5.10 
3 189.10 5.40 

Média 183.18 5.23 

Fonte: (autoria própria, 2024) 

Do ponto de vista do experimento de comparação de 

similaridade, a diminuição do tempo de execução obtido pelo 

aumento do número de threads foi satisfatório, pois representou 

um ganho de 86.74%, no caso da aplicação de 8 threads. 

Apesar disso, o algoritmo ainda apresenta oportunidade de 

melhoria nos tempos de execução através da inclusão de 

paralelismo nas chamadas para APIs, ou seja, execução 

concorrente das chamadas ao ChatGPT e ao Gemini, bem como 

através da redução dos timeouts entre as chamadas das LLMs 

através do uso de requisições em lote, recurso disponível em 

ambas as APIs. Além disso, novos trabalhos podem verificar o limite 

de ganho que o aumento de threads representa para os tempos de 

execução, que tendem a ser limitados pela porção não paralela do 

código. 

4 Considerações Finais 
O presente artigo teve como objetivo apresentar analisar a 

similaridade das mensagens de assert da ferramenta de descrição 

de asserts e as geradas por LLM, bem como os ganhos obtidos pelo 

uso de multi-threading. 

Quanto a análise de similaridade, os resultados indicam que a 
ferramenta gera mensagens cerca de 70% similares as geradas por 
LLMs, mas possui vantagens em relação ao primeiro por ser mais 
constante quanto ao formato das mensagens, sempre seguir a 
sintaxe java corretamente, apresentar tempos de execução menor 
independentemente da quantidade de asserts e por não ser pago. 

Já quanto a aplicação de técnicas de multi-thread, os resultados 

indicam uma diminuição considerável do tempo de execução, que 

representa um ganho de até 7,53 vezes em relação à execução 

sequencial quando 8 threads são aplicadas. 

Apesar disso, o presente artigo abre margem para trabalhos 

futuros, que incluem a realização de experimentos empíricos com 

pessoas reais para verificar a validade das mensagens de assert 

geradas pela ferramenta, a inclusão de paralelismo entre as 

chamadas das APIs das LLMs e o uso de chamadas em lote visando 

diminuir ainda mais o tempo de execução do algoritmo de 
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comparação e a verificação do ganho máximo que a adição de 

threads traria. 
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