
63

Revista de Sistemas e Computação, Salvador, v. 15, n. 2, p. 63-68, mai/ago 2025

https://revistas.unifacs.br/index.php/rsc

Paralelismo aplicado na comparação de descrições de assert de testes
unitários

Vítor Augusto Ueno Otto
vitoruenootto@gmail.com

Instituto Federal Catarinense Campus Blumenau

Blumenau, Santa Catarina, Brasil

Abstract
O presente artigo apresenta um algoritmo de análise de

similaridade de mensagens de descrição de erro de asserts em

testes unitários gerados por uma ferramenta de desenvolvimento

próprio e as LLMs (Large Language Models) ChatGPT e Gemini, bem

como os ganhos obtidos através do uso de técnicas multi-thread

neste algoritmo. Os resultados indicam uma similaridade média de

71% para o ChatGPT e 74% para o Gemini, sugerindo que a

ferramenta pode ser uma boa alternativa para a geração de

mensagens de erro de assert, mas com a vantagem de ser mais

rápido, apresentar resultados mais constantes e menos erros de

compilação. Quanto ao uso das técnicas de multi-thread, obteve-

se um ganho de até 7,53 vezes com 8 threads em relação à

execução sequencial do algoritmo.

Keywords
Testes unitários, Assertion Roulette, Large Language Models,

Multithread

1 Introdução
O uso de testes de unidade como uma forma de aferir e aprimorar

a qualidade de software é uma prática que vem ganhanado

aderência no mercado [3]. Apesar disso, a qualidade dos testes de

unidade também deve ser levada em consideração, do contrário, a

manutenção do código de produção pode se tornar difícil e confusa

[6].

Na literatura, dentro dos test smells, classificação de más

práticas em testes de unidade, encontra-se o assertion roulette,

que ocorre quando um caso de teste possui múltiplos asserts

(afirmações) sem uma mensagem descritiva, que auxilia o

programador em caso de falha no teste [8]. Apesar de ser um dos

test smells que mais afetam a legibilidade do código [1], existem

poucas ferramentas que realizam tanto a identificação quanto a

refatoração do assertion roulette [2][7].

Para superar essas limitações, uma ferramenta foi criada como

um trabalho de conclusão de curso. Essa ferramenta gera

mensagens descritivas para asserts em testes unitários de forma

automática com base no tipo de assert e nos dados envolvidos na

afirmação. A ferramenta é compatível com asserts em JUnit 4 e 5.

Para validar a eficácia da ferramenta, foram realizados

experimentos comparativos de similaridade entre as mensagens

geradas por ela e aquelas produzidas por LLMs (Large Language

1 https://openai.com/index/chatgpt/
2 https://gemini.google.com/?hl=pt-BR

Models, ou Grandes Modelos de Linguagem), como ChatGPT e

Gemini. Durante esses experimentos, observou-se que o algoritmo

de comparação apresentava um tempo de execução elevado,

evidenciando a necessidade de melhorias de desempenho. Essa

limitação destacou uma oportunidade para implementar técnicas

de multi-threading, visando otimizar a execução e reduzir

significativamente o tempo de processamento.

1.1 Objetivos
O presente trabalho tem como objetivo apresentar os resultados

da análise de similaridade entre as mensagens geradas pela

ferramenta de descrição de asserts e aquelas produzidas por LLMs

(Large Language Models), como ChatGPT e Gemini. Além disso,

busca destacar os ganhos de desempenho obtidos com a aplicação

de técnicas de multi-threading, que foram implementadas para

otimizar o tempo de execução do algoritmo comparativo. A análise

também aborda os possíveis prós e contras da ferramenta, bem

como possíveis pontos de melhoria e trabalhos futuros.’

2 Metodologia
O experimento consistiu em duas partes: a comparação de
similaridade das mensagens de descrição de assert e a medida de
desempenho para execuções com 1, 4 e 8 threads.

Para a primeira etapa do experimento, as LLMs selecionadas

foram o ChatGPT1 e o Gemini2 por sua relevância e utilização em

outros trabalhos [9]. Apesar disso, foram realizadas tentativas com

o llama3, modelo gratuito, mas que se mostrou lento demais para

os testes. De forma mais específica, os modelos utilizados foram o

gpt-3.5-turbo e o gemini-1.5-flash, por serem duas alternativas

populares e de propósito geral.

Utilizou-se de práticas comuns elaboração de prompts utilizadas

na literatura para interagir com as LLMs [9] [4]. Esta consisite em

montar o prompt em duas partes, uma que contextualiza a LLM

quanto ao cenário e ao papel que ela deve assumir (role ou

contexto), e outra que instrui ela quanto ao que deve fazer de

forma clara e as expectativas da tarefa (instrução) [9]. A string de

contextualização e a base da mensagem de instrução estão

exibidos na Figura 1. Note que a mensagem de instrução não está

completa porque durante a execução os asserts são concatenados

para formar a mensagem final.

Para a comparação entre as mensagens geradas pela ferramenta

com as geradas pelas LLMs, utilizou-se do algoritmo Jaro de

similaridade de strings por sua capacidade de gerar scores com

3 https://www.llama.com/

https://openai.com/index/chatgpt/
https://gemini.google.com/?hl=pt-BR
https://www.llama.com/

64

Revista de Sistemas e Computação, Salvador, v. 15, n. 2, p. 63-68, mai/ago 2025

https://revistas.unifacs.br/index.php/rsc

qualidade [5]. O resultado do algoritmo Jaro é uma numeração

entre 0 e 1 que indica o quão similar duas strings são, com 0

indicando que as strings não são nem um pouco similares e 1

indicando serem idênticas. Optou-se pelo uso de uma

implementação pronta do algoritmo, disponível através da

biblioteca python jaro-winkler 4.

Já para a segunda parte do experimento, a análise de

desempenho da ferramenta considerou a média de tempo de três

execuções, levando em conta os 10 primeiros asserts de cada um

dos projetos analisados. Ao todo, foram utilizados os valores de

uma, quatro e oito threads, limitadas pelo número de núcleos do

computador do autor. Apenas três execuções foram realizadas por

limitações de tempo, tendo em vista que para algumas das

execuções leva-se mais de 20 minutos para o fim do experimento.

Além disso, a escolha do uso de 10 asserts por projeto se deu por

limitações do número de requisições diárias permitidas pelas

LLMs5.

Ao todo, foram considerados 32 projetos para o experimento,

que tiveram como critério de seleção utilizarem Java e Junit, serem

open source e possuirem uma quantidade razoável de asserts. A

lista de projetos utilizados está presente na Tabela 1. Não obstante,

foram levados em consideração apenas os tipos de assert que a

ferramenta geradora de descrições suporta, que estão presentes na

Tabela 2.

Table 1: Projetos Open Source

Projeto Versão

1 Avro 1.11.1

2 Cucumber JVM 7.11.1

3 Disruptor 4.0.0.RC1

4 Dropwizard 2.1.4

5 Fastjson2 2.0.24

6 GraphHopper 6.2

7 Jasypt Spring Boot 3.0.5

8 JavaParser 3.25.1

9 JDA 5.0.0-beta.5

10 JetCache 2.7.3

11 JFreeChart 1.5.3

12 Jodd 5.3.0

13 Jsoup 1.15.3

14 Liquibase 4.19.1

15 Logback 1.4.5

16 OpenPDF 1.3.30

17 OptaPlanner 9.35.0.Beta2

18 POI-TL 1.12.1

19 Recaf 2.21.13

20 Redisson 3.19.3

21 RipMe 1.7.95

22 RoaringBitmap 0.9.39

23 RSocket Java 1.1.3

4 https://pypi.org/project/jaro-winkler/

24 Simple Binary Encoding 1.27.0

25 Simplify 1.3.0

26 Spring Batch 5.0.1

27 Spring Data JPA 3.0.3

28 SpringDoc OpenAPI 2.0.2

29 TableSaw 0.43.1

30 Thymeleaf 3.1.1.RELEASE

31 Unirest Java 3.14.2

32 WireMock 3.0.0-beta.7

Fonte: (autoria própria, 2024)

O ambiente de desenvolvimento consistiu em um computador

com um processador intel core i5 6400, 16 GB de RAM 2666mhz e

sistema operacional Linux Mint. Não obstante, durante os testes,

todos os programas aplicativos não essenciais para a execução

foram fechados. Apesar disso, os testes não aconteceram em um

ambiente isolado, portanto processos do sistema operacional,

incluindo a interface gráfica, mantiveram-se executando, o que

pode ter afetado os testes. Ambos os testes foram executados no

dia 5 de dezembro de 2024.

Table 2: Tipos de assert considerados para o experimento

JUnit 4 JUnit 5

assertArrayEquals assertAll

assertEquals assertArrayEquals

assertFalse assertEquals

assertNotEquals assertDoesNotThrow

assertNotNull assertFalse

assertNotSame assertIterableEquals

assertNull assertLinesMatch

assertSame assertNotEquals

assertThat assertNotNull

assertThrows assertNotSame

assertTrue assertInstanceOf

fail assertNull

 assertSame

 assertThrows

 assertThrowsExactly

 assertTimeout

 assertTimeoutPreemptively

 assertTrue

 fail

Fonte: (autoria própria, 2024)

5 https://platform.openai.com/docs/guides/rate-limits?context=tier-one

https://pypi.org/project/jaro-winkler/
https://platform.openai.com/docs/guides/rate-limits?context=tier-one

65

Revista de Sistemas e Computação, Salvador, v. 15, n. 2, p. 63-68, mai/ago 2025

https://revistas.unifacs.br/index.php/rsc

Figure 1: Formato de prompt utilizado nas LLMs

Fonte: (Autoria própria, 2024)

3 Resultados
A presente seção apresenta os resultados dos dois experimentos,

que utilizam o mesmo código fonte python presente na Figura 2.

Note que a função acessar_arquivo realiza as operações de geração

de mensagens por LLMs e comparação de similaridade com as

descrições da ferramenta geradora, lidas de um arquivo. A linha 20

e 21 realizam a geração das mensagens através de chamadas às

APIs do ChatGPT e Gemini, respectivamente. Por limitação de

espaço, essas chamadas omitidas.

A função main, por sua vez, realiza a chamada da função

acessar_arquivo e aplica as técnicas de multi-thread por meio do

método ThreadPoolExecutor da concurrent.futures, biblioteca

padrão de concorrência no python 6. Observe que a quantidade de

threads utilizada é passada por parâmetro na linha 52, e

corresponde ao argumento de linha de comando lido na linha 42.

As demais subseções apresentam e discutem os resultados de

cada experimento.

3.1 Similaridade das Descrições de Assert
Com o intuito de verificar a razoabilidade das mensagens de
descrição de assert geradas pela ferramenta, realizou-se um
experimento comparativo entre elas e as geradas por Large
Language Models (LLM, grandes modelos de linguagem). Os
resultados de similarida estão presentes na Tabela 3.

Nota-se que, de forma geral, as mensagens geradas pela

ferramenta apresentam uma similaridade alta com as mensagens

geradas por LLMs, com médias gerais de 0,71 para o ChatGPT e 0,74

para o Gemini. Tais resultados podem indicar uma similaridade

moderadamente boa, e que as mensagens geradas podem possuir

uma coerência razoável em termos do vocabulário utilizado.

Quando observado os resultados por projeto, nota-se que o

ChatGPT variou sua similaridade entre 0,58 (Logback) e 0,79

(Liquibase), enquanto o Gemini variou menos com 0,68 (Jsoup) e

0,77 (Simplify, Optaplanner, Rsocket Java, Unirest Java). Esse

resultado sugere que os modelos podem ter dificuldade para gerar

mensagens a depender do projeto e de seu contexto.

Não obstante, destaca-se que o Gemini apresentou

similaridades ligeiramente maiores que as do ChatGPT, bem como

uma variação menor entre projetos. Ainda que pequena a variação,

ela demonstra as diferenças de treinamento que os modelos têm.

Apesar disso, ressalta-se que ao analisar as respostas obtidas pelas

LLMs, notouse que em alguns casos, as mensagens não têm relação

nenhuma com o assert original, não seguem a sintaxe Java ou

6 https://docs.python.org/3/library/concurrent.futures.html

apresentam uma mensagem genérica como "a execução falhou". A

ferramenta, por outro lado, tende a apresentar resultados

constantes independentemente do projeto, tendo em vista que a

lógica para criação das mensagens personalizadas é fixa e baseada

na sintaxe da linguagem Java.

De forma geral, os resultados indicam que a ferramenta gera

mensagens razoavelmente similares às geradas por LLMs. Portanto,

pode-se concluir que os resultados gerados pela ferramenta são

um bom ponto de partida ao ter em vista que os grandes modelos

de linguagem foram treinados com dados reais, eles podem

possivelmente representar as práticas adotadas por projetos reais

e pela literatura. No entanto, conforme mencionado

anteriormente, as respostas geradas pelos modelos podem não

descrever corretamente os asserts a que originaram, além de

possivelmente não compilar sob a sintaxe Java. Outras limitações

das LLMs são o fato delas serem pagas (ao menos nos planos

utilizados) e dos tempos de execução serem maiores do que o da

ferramenta.

Esses resultados abrem margem para outras discussões e

trabalhos futuros, dentre os quais destaca-se a realização de

experimentos empíricos com usuários reais para verificar a

validade das mensagens geradas pela ferramenta e comparar seu

nível satisfação em relação a mensagens geradas por LLMs.

3.2 Desempenho Multithread
Os resultados das execuções com uma, quatro e oito threads

podem ser observadas nas Tabelas 4, 5, e 6, respectivamente.

Nota-se que os resultados indicam um impacto positivo da

utilização de multi-threading no desempenho do algoritmo

comparativo. Quando executado em uma única thread (Tabela 4),

o tempo médio de execução da comparação foi de 1379 segundos,

o que equivale a 23 minutos, além de um tempo médio por arquivo

de 39 segundos. Esse desempenho inicial com uma thread

representa a execução sequencial do algoritmo de comparação e

serve de ponto de referência para as execuções multi-thread.

Com a utilização de quatro Threads (Tabela 5), obteve-se uma

redução significativa no tempo total de execução, que passou para

uma média de 351 segundos, ou cerca de 6 minutos, com o tempo

médio por arquivo em torno de 10 segundos. Esse resultado indica

um speedup de cerca de 3,92, ou seja, uma melhoria de quase

quatro vezes em relação à execução sequencial.

Ao elevar o número de threads para oito (Tabela 6), observa-se um
resultado ainda melhor, com o tempo médio total caindo para 183
segundos (3 minutos) e o tempo médio por arquivo por volta de 5
segundos. Esse resultado indica uma melhora de
aproximadamente 7,53 em relação a execução sequencial,
indicando que o aumento do paralelismo para 8 threads continua
a trazer benefícios nessas condições.

https://docs.python.org/3/library/concurrent.futures.html

66

Revista de Sistemas e Computação, Salvador, v. 15, n. 2, p. 63-68, mai/ago 2025

https://revistas.unifacs.br/index.php/rsc

Figure 2: Código utilizado pelos experimentos

Fonte: (Autoria própria, 2024)

67

Revista de Sistemas e Computação, Salvador, v. 15, n. 2, p. 63-68, mai/ago 2025

https://revistas.unifacs.br/index.php/rsc

Table 3: Média de similaridade de mensagens de assert geradas

por LLMs em relação à ferramenta

Projeto Média sim. Chatgpt Média sim. Gemini

Disruptor 0.76 0.75

Logback 0.58 0.75

Cucumber JVM 0.62 0.71

Jetcache 0.74 0.70

FastJson2 0.73 0.74

Jasypt Spring Boot 0.70 0.75

Tablesaw 0.70 0.77

Liquibase 0.79 0.71

Redisson 0.72 0.73

RoaringBitmap 0.75 0.73

Unirest Java 0.76 0.77

Jsoup 0.65 0.68

Javaparser 0.71 0.71

Avro 0.72 0.71

Wiremock 0.76 0.70

Spring Data 0.72 0.72

OpenPDF 0.70 0.72

Spring Batch 0.74 0.73

Thymeleaf 0.74 0.76

Rsocket Java 0.72 0.77

Optaplanner 0.71 0.77

Jodd 0.75 0.76

Simple Binary Encoding 0.78 0.72

JDA 0.67 0.75

Dropwizard 0.74 0.75

Jfreechart 0.67 0.74

Graphhopper 0.70 0.74

Poi-tl 0.76 0.74

Ripme 0.69 0.72

Springdoc Openapi 0.73 0.70

Recaf 0.76 0.72

Simplify 0.62 0.77

Media 0.71 0.74

Fonte: (autoria própria, 2024)

Table 4: Tempos de execução com uma thread

Execução Tempo total de execução(s) Tempo médio por arquivo (s)

1 1381.44 39.47
2 1378.39 39.38
3 1379.65 39.42

Média 1379.82 39.42

Fonte: (autoria própria, 2024)

Table 5: Tempos de execução com quatro threads

Execução Tempo total de execução(s) Tempo médio por arquivo (s)

1 351.88 10.05
2 347.28 9.92
3 355.40 10.15

Média 351.52 10.04

Fonte: (autoria própria, 2024)

Table 6: Tempos de execução com oito threads

Execução Tempo total de execução(s) Tempo médio por arquivo (s)

1 181.92 5.20
2 178.51 5.10
3 189.10 5.40

Média 183.18 5.23

Fonte: (autoria própria, 2024)

Do ponto de vista do experimento de comparação de

similaridade, a diminuição do tempo de execução obtido pelo

aumento do número de threads foi satisfatório, pois representou

um ganho de 86.74%, no caso da aplicação de 8 threads.

Apesar disso, o algoritmo ainda apresenta oportunidade de

melhoria nos tempos de execução através da inclusão de

paralelismo nas chamadas para APIs, ou seja, execução

concorrente das chamadas ao ChatGPT e ao Gemini, bem como

através da redução dos timeouts entre as chamadas das LLMs

através do uso de requisições em lote, recurso disponível em

ambas as APIs. Além disso, novos trabalhos podem verificar o limite

de ganho que o aumento de threads representa para os tempos de

execução, que tendem a ser limitados pela porção não paralela do

código.

4 Considerações Finais
O presente artigo teve como objetivo apresentar analisar a

similaridade das mensagens de assert da ferramenta de descrição

de asserts e as geradas por LLM, bem como os ganhos obtidos pelo

uso de multi-threading.

Quanto a análise de similaridade, os resultados indicam que a
ferramenta gera mensagens cerca de 70% similares as geradas por
LLMs, mas possui vantagens em relação ao primeiro por ser mais
constante quanto ao formato das mensagens, sempre seguir a
sintaxe java corretamente, apresentar tempos de execução menor
independentemente da quantidade de asserts e por não ser pago.

Já quanto a aplicação de técnicas de multi-thread, os resultados

indicam uma diminuição considerável do tempo de execução, que

representa um ganho de até 7,53 vezes em relação à execução

sequencial quando 8 threads são aplicadas.

Apesar disso, o presente artigo abre margem para trabalhos

futuros, que incluem a realização de experimentos empíricos com

pessoas reais para verificar a validade das mensagens de assert

geradas pela ferramenta, a inclusão de paralelismo entre as

chamadas das APIs das LLMs e o uso de chamadas em lote visando

diminuir ainda mais o tempo de execução do algoritmo de

68

Revista de Sistemas e Computação, Salvador, v. 15, n. 2, p. 63-68, mai/ago 2025

https://revistas.unifacs.br/index.php/rsc

comparação e a verificação do ganho máximo que a adição de

threads traria.

Referências
[1] Wajdi Aljedaani, Mohamed Wiem Mkaouer, Anthony Peruma, and Stephanie

Ludi. 2023. Do the Test Smells Assertion Roulette and Eager Test Impact

Students’
Troubleshooting and Debugging Capabilities?. In 2023 IEEE/ACM 45th International

Conference on Software Engineering: Software Engineering Education and
Training (ICSE-SEET). IEEE, 29–39.

[2] Wajdi Aljedaani, Anthony Peruma, Ahmed Aljohani, Mazen Alotaibi, Mohamed
Wiem Mkaouer, Ali Ouni, Christian D Newman, Abdullatif Ghallab, and Stephanie
Ludi. 2021. Test smell detection tools: A systematic mapping study. In
Proceedings of the 25th International Conference on Evaluation and Assessment
in Software Engineering. 170–180.

[3] Paul Ammann and Jeff Offutt. 2016. Introduction to software testing. Cambridge

University Press.
[4] Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2024. Self-collaboration Code

Generation via ChatGPT. arXiv:2304.07590 [cs.SE]

https://arxiv.org/abs/2304.07590
[5] F GONDIM. 2006. Algoritmo de comparação de strings para integração de

esquemas de dados. Trabalho de Conclusão de Curso (Graduação) (2006).

 https: //www.cin.ufpe.br/~tg/2005-2/fmg.pdf
[6] Robert C Martin. 2009. Clean code: a handbook of agile software craftsmanship.

Pearson Education.
[7] Railana Santana, Luana Martins, Larissa Soares, Tássio Virgínio, Adriana Cruz,

Heitor Costa, and Ivan Machado. 2020. RAIDE: a tool for Assertion Roulette and
Duplicate Assert identification and refactoring. 374–379.

https://doi.org/10.1145/
3422392.3422510

[8] Arie Van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard Kok. 2001.
Refactoring test code. In Proceedings of the 2nd international conference on
extreme programming and flexible processes in software engineering (XP2001).
Citeseer, 92–95.

[9] Zhiqiang Yuan, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen, Xin Peng, and

Yiling Lou. 2024. Evaluating and improving chatgpt for unit test generation.
Proceedings of the ACM on Software Engineering 1, FSE (2024), 1703–1726.

https://arxiv.org/abs/2304.07590
https://arxiv.org/abs/2304.07590
https://www.cin.ufpe.br/~tg/2005-2/fmg.pdf
https://www.cin.ufpe.br/~tg/2005-2/fmg.pdf
https://doi.org/10.1145/3422392.3422510
https://doi.org/10.1145/3422392.3422510

