
61

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 61-69, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

Uma proposta de algoritmo para treinamento de redes
neurais artificiais: primeiros resultados em uma

comparação com SGD, Adam e AdraGrad
Jean Vinicius da Silva

Montanari
Graduando em Matemática

Universidade do Estado de Mato
Grosso (UNEMAT)

Campus de Sinop - MT

vinicius.montanari@unemat.br

Luciana Mafalda Elias de Assis
Professora da Universidade do

Estado de Mato Grosso (UNEMAT)

Campus de Sinop - MT

luciana.assis@unemat.br

Raul Abreu de Assis
Professor da Universidade do

Estado de Mato Grosso (UNEMAT)

Campus de Sinop - MT

raul.assis@unemat.br

ABSTRACT

This paper presents a new supervised training algorithm for

artificial neural networks, developed with the aim of improving

network performance in classification tasks, where accuracy is

crucial. The method is compared with the optimization algorithms

Stochastic Gradient Descent, ADAM, and ADAGRAD.

Experiments were conducted using different datasets and network

architectures. The metrics used for evaluation were the number of

errors and accuracy during the training and testing phases. The

results indicate that the proposed method shows competitive

performance, with specific advantages in certain contexts, making

it a promising alternative to traditional optimization algorithms.

Keywords

Neural networks; Optimization; Training; Machine learning.

RESUMO

Este artigo apresenta um novo algoritmo de treinamento

supervisionado para redes neurais artificiais, desenvolvido com o

objetivo de melhorar o desempenho de redes em tarefas de

classificação, em que a acurácia é fundamental. O método é

comparado aos algoritmos de otimização Stochastic Gradient

Descent, ADAM e ADAGRAD. Foram realizados experimentos

com diferentes conjuntos de dados e arquiteturas de rede. As

métricas utilizadas para avaliação foram o número de erros e a

acurácia, durante as fases de treinamento e teste. Os resultados

indicam que o método proposto apresenta desempenho

competitivo, com vantagens específicas em determinados

contextos, sendo uma alternativa promissora aos algoritmos

tradicionais de otimização.

Palavras-chave

Redes neurais; Otimização; Treinamento; Aprendizado de

Máquina.Neural.

1. INTRODUÇÃO

O avanço das redes neurais artificiais tem impulsionado

significativamente o desenvolvimento de soluções na área de

aprendizado de máquina, especialmente em tarefas como

classificação, reconhecimento de padrões e processamento de

dados complexos.

O desempenho dessas redes está diretamente relacionado à escolha

de algoritmos de otimização capazes de ajustar os parâmetros do

modelo de forma eficiente, garantindo uma boa capacidade de

generalização.

Este trabalho aborda especificamente uma proposta de algoritmo de

treinamento supervisionado em tarefas de classificação. Uma

comparação é feita com os algoritmos de treinamentos baseados no

Gradiente Estocástico com Minilotes, uma técnica amplamente

utilizada por proporcionar equilíbrio entre estabilidade na

convergência e custo computacional.

Além desse método, também são analisados algoritmos adaptativos

como ADAM e ADAGRAD. Nossa proposta de algoritmo,

denominada WEGRAD, introduz um mecanismo de ponderação do

gradiente com o objetivo de melhorar o desempenho com foco na

acurácia, isto é, a classificação de forma correta do maior número

possível de pontos da base de dados.

A escolha desse objeto de estudo justifica-se pela ampla utilização

das redes neurais em diferentes áreas e pela necessidade constante

de aprimorar os métodos de treinamento, tornando-os mais

eficientes, precisos e capazes de lidar com diferentes tipos de dados

e problemas. Estudar e compreender o comportamento desses

algoritmos é essencial para o desenvolvimento de modelos mais

robustos e eficientes.

Dessa forma, o objetivo deste trabalho é analisar, propor e

comparar algoritmos de otimização aplicados ao treinamento de

redes neurais, avaliando seus desempenhos com foco na acurácia,

em diferentes bases de dados e variando um parâmetro

fundamental, a taxa de aprendizagem.

2. FUNDAMENTAÇÃO TEÓRICA

Os modelos de redes utilizadas neste trabalho serão baseados em

redes do tipo perceptron, que revisamos rapidamente, a seguir.

2.1 Rede Perceptron

Segundo [8], o Perceptron, idealizado por Rosenblatt em 1958, é a

forma mais simples de uma rede neural artificial, inspirado na retina

e utilizado para reconhecer padrões geométricos.

A Figura 1(adaptada de [8], p.58), ilustra uma rede Perceptron

constituída de 𝑛 sinais de entrada, representativas do problema a

mailto:vinicius.montanari@unemat.br
mailto:luciana.assis@unemat.br
mailto:raul.assis@unemat.br

62

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 61-69, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

ser mapeado, e somente uma saída, pois a mesma é constituída de

somente um único neurônio.

Apesar de ser uma rede considerada simples, o Perceptron

despertou grande interesse da comunidade científica desde sua

proposição, atraindo pesquisadores interessados no potencial da

área de redes neurais e inteligência artificial [8].

Figura 1: Ilustração da rede Perceptron.

Em termos matemáticos, o processamento interno realizado pelo

Perceptron pode ser descrito pelas seguintes expressões:

 𝑢 = ∑ 𝑥𝑖 ∙ 𝑤𝑖
𝑛
1 + 𝑣, (1)

na qual 𝑣 é chamado de parâmetro de “viés” e 𝑤𝑖 são chamados

“pesos sinápticos”. O sinal do neurônio é dado então através de uma

função de ativação 𝑔(𝑢) :

 𝑦 = 𝑔(𝑢). (2)

No primeiro passo do funcionamento do Perceptron, é realizado o

cálculo do potencial de ativação do neurônio, representado por 𝑢.

Esse valor é obtido por meio do somatório ponderado dos sinais de

entrada, em que cada entrada 𝑥𝑖 é multiplicada pelo respectivo peso

sináptico 𝑤𝑖, refletindo importância daquela entrada para o

processo de decisão do neurônio. A esse somatório é adicionado o

termo de viés 𝑣, responsável por deslocar a função de ativação,

permitindo à rede ajustar sua fronteira de decisão mesmo quando

todos os valores de entrada forem nulos. Dessa forma, o Perceptron

simples se apresenta como um modelo fundamental para o

entendimento das redes neurais, sendo capaz de realizar

classificações lineares com base em uma combinação ponderada

das entradas e uma função de ativação.

2.2 Redes Perceptron Multicamadas

A fim de superar as limitações do Perceptron simples, foi

desenvolvido o Perceptron Multicamadas. Segundo [8] (p.91), “As

Redes Perceptron de múltiplas camadas (PMC) são caracterizadas

pela presença de pelo menos uma camada intermediária

(escondida) de neurônios, situada entre a camada de entrada e a

respectiva camada neural de saída.”

A Figura 2 (retirada de [8], p.92), representa uma estrutura

pertencente à arquitetura feedforward. Nessa configuração, o

funcionamento da rede neural ocorre de forma sequencial, em que

as saídas de uma camada são utilizadas como entradas para a

camada seguinte, até atingir a camada final [3].

De acordo com [8] (p. 93), “os estímulos ou sinais são apresentados

à rede em sua de entrada [...] os neurônios da camada de saída

recebem os estímulos advindos dos neurônios da última camada

intermediária, produzindo um padrão de resposta que será a saída

disponibilizada pela rede”.

Figura 2: Representação de redes Perceptron Multicamadas.

Diferentemente do Perceptron simples, em que um único neurônio

realiza o mapeamento concentrado do processo, as redes

Perceptron Multicamadas (PMC) distribuem o conhecimento

relacionado ao comportamento entrada/saída entre todos os seus

neurônios. Nesse contexto, o problema real é modelado tanto pela

camada de entrada, que recebe os estímulos iniciais, quanto pela

camada de saída, que gera a resposta esperada.

2.3 Treinamento Supervisionado

O treinamento supervisionado é uma das estratégias mais utilizadas

no campo do aprendizado de máquina e consiste em fornecer à rede

neural um conjunto de dados de entrada com as respectivas saídas

desejadas, denominados exemplos rotulados.

Conforme descrito por [8], essa abordagem exige a

disponibilização de uma tabela de dados representativa, contendo

os sinais de entrada e suas correspondentes saídas desejadas. Essa

tabela, também conhecida como tabela de atributos/valores, deve

ser capaz de refletir o comportamento do sistema a ser modelado,

fornecendo subsídios suficientes para que as estruturas neurais

possam formular “hipóteses” sobre o que se deve ser aprendido.

Nosso método aplica-se onde a tarefa da rede é classificar os dados

em um conjunto discreto de classes. No caso em que temos 𝑚

classes trabalhamos com 𝑚 neurônios na camada de saída. Uma

possível interpretação para o estado dos neurônios da camada de

saída é a probabilidade de um certo dado estar na classe

correspondente ao neurônio. Para a tarefa de classificação costuma-

se simplesmente classificar um dado na classe com a maior

probabilidade correspondente.

2.4 Algoritmo Gradiente Estocástico com

Minilote (SGD)

É um algoritmo fundamental para o treinamento de redes neurais

artificiais. Seu funcionamento baseia-se na aplicação da regra da

cadeia do Cálculo Diferencial para calcular o gradiente do erro em

relação aos pesos da rede.

O processo inicia-se na camada de saída, onde o erro entre a saída

produzida pela rede e a saída desejada é calculado. Em seguida,

esse erro é propagado para trás através das camadas da rede,

ajustando os pesos de forma a minimizar a função de custo. Esse

63

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 61-69, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

ajuste é realizado com base em um algoritmo de otimização, como

o gradiente descendente, que utiliza as derivadas parciais do erro

para cada peso, atualizando-os de maneira proporcional ao valor

desses gradientes. O objetivo é reduzir gradualmente o erro da rede

ao longo de várias iterações do algoritmo, chamadas de “épocas”

de treinamento.

Para otimizar o processo de treinamento e equilibrar o custo

computacional com a estabilidade da convergência, é comum

empregar a retropropagação com minilotes. Nessa abordagem, o

conjunto de dados de treinamento é dividido em pequenos

subconjuntos de amostras, denominados minilotes. As atualizações

dos parâmetros são feitas, então, após a retropropagação ser

realizada em cima de cada minilote.

2.5 Algoritmo ADAGRAD

De acordo com [2] e [7], o ADAGRAD é um algoritmo que realiza

a adaptação individual das taxas de aprendizado para cada

parâmetro do modelo, com base na soma acumulada dos quadrados

dos gradientes. Esse mecanismo permite que parâmetros que

recebem atualizações frequentes tenham suas taxas de aprendizado

progressivamente reduzidas, enquanto parâmetros menos

atualizados mantêm taxas relativamente maiores. No Quadro 1,

apresentamos os passos requeridos pelo algoritmo ADAGRAD.

Quadro 1: Algoritmo ADAGRAD

Etapa

1

Descrição: Inicializar parâmetros

Fórmula / Ação: 𝜃0←Valores iniciais

Etapa

2

Descrição: Inicializar acumulador de gradientes ao

quadrado

Fórmula / Ação: 𝐺0← 0

Etapa

3

Descrição: Para cada iteração t=1 até T:

Fórmula / Ação: —

Etapa

3.1

Descrição: Gradiente da função de custo em relação

a 𝜃

Fórmula / Ação: 𝑔𝑡=𝛻𝜃𝐶(𝜃𝑡−1)

Etapa

3.2

Descrição: Acumulador com os quadrados dos

gradientes

Fórmula / Ação: 𝐺𝑡 = 𝐺𝑡−1 + 𝑔𝑡 ⊙ 𝑔𝑡

Etapa

3.3

Descrição: Atualizar os parâmetros com taxa

adaptativa

Fórmula / Ação: 𝜃𝑡 = 𝜃𝑡−1 −
𝛼

√𝐺𝑡+𝜖
⨀𝑔𝑡

 O vetor 𝜃 representa os parâmetros do modelo, ou seja, os pesos e

vieses que são otimizados durante o treinamento. A taxa de

aprendizado, denotada por 𝛼, controla o tamanho dos passos dados

na direção oposta ao gradiente. Sendo 𝜃0 os parâmetros (Pesos e

Vieses) iniciais da rede, 𝐺𝑡 é o acumulador das componentes dos

gradientes ao quadrado, 𝑔𝑡 o gradiente para função de custo em

relação a cada parâmetro 𝜃0, 𝑡 é o índice do minilote, 𝜃𝑡 o conjunto

completo de parâmetros da rede (pesos sinápticos e vieses) depois

da iteração no minilote 𝑡, 𝜖 uma constante pequena para evitar

divisão por 0. Vale ressaltar que a operação ⨀ representa uma

multiplicação componente por componente. A função de custo 𝐶 é

definida como:

 𝐶 = ∑ (𝑦𝑖 − 𝑌𝑖)2𝑚
𝑖=1 (3)

A função calcula o somatório dos erros quadráticos entre a saída

prevista pela rede 𝑦𝑖 e a saída desejada (rótulo) 𝑌𝑖 para cada amostra

𝑖, na qual 𝑖 varia de 1 até 𝑚, que é o número total de neurônios na

camada de saída da rede.

2.6 Algoritmo ADAM

Proposto por [5], é um otimizador baseado em descida de gradiente

estocástica que combina momentos de primeira e segunda ordem

para calcular taxas de aprendizagem adaptativas por parâmetro.

Com baixa demanda de memória e fácil implementação, é

amplamente utilizado em problemas com grandes volumes de

dados e parâmetros. No Quadro 1, apresentamos os passos

requeridos pelo algoritmo ADAM.

Quadro 2: Algoritmo ADAM.

Etapa

1

Descrição: Inicializar parâmetros

Fórmula / Ação: 𝜃0←Valores iniciais

Etapa

2

Descrição: Inicializar momento

Fórmula / Ação: 𝑚0← 0

Etapa

3

Descrição: Inicializar variância

Fórmula / Ação: 𝑣0 ← 0

Etapa

4

Descrição: Inicializar contador de tempo

Fórmula / Ação: 𝑡 ← 0

Etapa

5

Descrição: Para cada iteração t = 1 até T:

Fórmula / Ação: —

Etapa

5.1

Descrição: Gradiente da função de custo em

relação a 𝜃

Fórmula / Ação: 𝑔𝑡=𝛻𝜃𝐶(𝜃𝑡−1)

Etapa

5.2

Descrição: Atualizar momento (1ª média

móvel)

Fórmula / Ação: 𝑚𝑡 = 𝛽1 ∗ 𝑚𝑡−1 + (1 −
𝛽1) ∗ 𝑔𝑡

64

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 61-69, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

Etapa

5.3

Descrição: Atualizar variância (2ª média

móvel)

Fórmula / Ação: 𝑣𝑡 = 𝛽2 ∗ 𝑣𝑡−1 + (1 −
𝛽2) ∗ 𝑔𝑡

2

Etapa

5.4

Descrição: Corrigir o viés do momento

Fórmula / Ação: 𝑚′𝑡 =
𝑚𝑡

(1−𝛽1)𝑡

Etapa

5.5

Descrição: Corrigir o viés da variância

Fórmula / Ação: 𝑣′𝑡 =
𝑣𝑡

(1−𝛽1)𝑡

Etapa

5.6

Descrição: Atualizar os parâmetros

Fórmula / Ação: 𝜃𝑡 = 𝜃𝑡−1 −
𝛼

√𝑣′𝑡+𝜀
∙ 𝑚′𝑡

Os coeficientes 𝛽1 e 𝛽2 são fatores de decaimento exponencial

utilizados para calcular médias móveis dos gradientes e de seus

quadrados, respectivamente. Para garantir estabilidade numérica e

evitar divisões por zero, o algoritmo utiliza um pequeno valor 𝜀,

geralmente igual a 10−8.

A cada iteração 𝑡, é calculado o gradiente 𝑔𝑡, correspondente à

derivada da função de custo em relação aos parâmetros. Em

seguida, são atualizados dois vetores auxiliares: o vetor de

momento 𝑚𝑡 , que armazena a média móvel dos gradientes, e o

vetor de variância 𝑣𝑡, que armazena a média móvel dos quadrados

dos gradientes. Como tanto 𝑚𝑡 quanto 𝑣𝑡 são inicialmente nulos, é

realizada uma correção de viés para evitar distorções nos primeiros

passos. Isso gera os vetores corrigidos 𝑚′𝑡 e 𝑣′𝑡 , que são então

utilizados na atualização dos parâmetros. A função de custo 𝐶 é a

mesma equação 3 acima.

2.7 Algoritmo Weighted Gradient / WEGRAD

(Método Proposto)

Neste trabalho, propomos um novo método de treinamento de redes

neurais, baseado no uso de minilotes e no ajuste adaptativo dos

gradientes associados a amostras incorretamente classificadas. O

objetivo é tanto acelerar a convergência, como fugir de mínimos

locais, reforçando o aprendizado sobre exemplos nos quais a rede

apresenta maior dificuldade.

O procedimento de treinamento ocorre da seguinte forma:

inicialmente, os parâmetros da rede (pesos e vieses) são sorteados

aleatoriamente em um intervalo pequeno centrado em zero. Em

cada época, as amostras de treinamento são embaralhadas e

divididas em minilotes de tamanho fixo. Dessa forma, para cada

minilote:

- Cada amostra é processada pela rede (passagem direta) e seus

gradientes são calculados via retropropagação.

- O gradiente estocástico é calculado somando-se a influência de

cada ponto de amostra do minilote, mas o peso de cada elemento

do minilote no gradiente depende se a rede conseguiu classificar a

amostra com sucesso ou não. Se a predição da rede para a amostra

for incorreta, os gradientes correspondentes são multiplicados por

um fator de penalização 𝑝 com 𝑝 ≥ 1. Se a predição for correta, os

gradientes são acumulados normalmente. Isso cria um gradiente

ponderado, que designaremos por 𝑢𝑡 para diferenciá-lo do

gradiente estocástico normal 𝑔𝑡.

- Ao final do minilote, os parâmetros da rede são atualizados

utilizando o gradiente ponderado calculado no minilote.

- Tanto a taxa de aprendizagem quanto o peso de penalização são

atualizados de acordo com o número total de épocas que se deseja

treinar a rede. O índice da época será designado por 𝜏. De forma

que representamos 𝛼(𝜏) e 𝑝(𝜏) como a taxa de aprendizagem e o

fator de penalização na 𝜏 − é𝑠𝑖𝑚𝑎 época respectivamente.

 A atualização dos parâmetros 𝜃 ao final de cada minilote é feita da

seguinte forma:

 𝜃𝑡 = 𝜃𝑡−1 − 𝛼(𝜏) ∙ 𝑢𝑡 (4)

onde 𝛼(𝜏) é a taxa de aprendizado e 𝑢𝑡 o gradiente ponderado

calculado para o minilote 𝑡.

A título de ilustração, se 𝑢𝑡 representa a variável de acumulação do

gradiente ponderado para o minilote 𝑡 e 𝛥𝑢 a contribuição de um

elemento do minilote para o gradiente. Neste caso, a atualização é

feita da seguinte forma:

- se o dado está sendo classificado de forma incorreta:

 𝑢𝑡 ← 𝑢𝑡 + 𝑝(𝜏) ∙ 𝛥𝑢 (5)

- se o dado está sendo classificado da forma correta:

 𝑢𝑡 ← 𝑢𝑡 + 𝛥𝑢 (6)

Outra forma de escrever o cálculo do gradiente ponderado é:

 𝑢𝑡 = ∑ 𝑤(𝑖) ∙ 𝛥𝑢𝑖
𝑛
𝑖=1 (7)

na qual 𝑛 é o total de elementos em um minilote, 𝑡 é o índice do

minilote, e 𝑤(𝑖) = 1 se o elemento 𝑖 está sendo classificado de

modo correto e 𝑤(𝑖) = 𝑝(𝜏) se está classificado de forma errada.

Além disso, o método adota duas estratégias dinâmicas de ajuste da

taxa de aprendizado e o fator de penalização ao longo do

treinamento. A taxa de aprendizado, decresce linearmente

conforme a época:

 𝛼(𝜏) = 𝛼0 −
𝛼0∗(𝜏−1)

𝑁
, (8)

onde 𝛼0 é a taxa de aprendizado inicial e 𝑁 é o número total de

épocas em que se quer realizar o treinamento.

O fator de penalização cresce linearmente ao longo das épocas:

 𝑝(𝜏) = 𝑝0 + 𝑘 ∗
𝑝0∗(𝜏−1)

𝑁
, (9)

onde 𝑝0 é o fator de penalização inicial e 𝑘 é um parâmetro que

mede o peso da penalização limitando o máximo peso da

penalização. Em todas nossas simulações, utilizamos 𝑘 = 100,

sendo que o parâmetro não foi otimizado nem sua variação

estudada ainda.

3. METODOLOGIA

Neste estudo, foram utilizados quatro conjuntos de dados com

diferentes características e níveis de complexidade, com o objetivo

de comparar o desempenho dos algoritmos de treinamento SGD,

ADAM, ADAGRAD e o método proposto, WEGRAD.

65

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 61-69, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

Os dados selecionados representam distintos domínios e desafios,

desde problemas simples de decisão até tarefas complexas de

classificação com alta dimensionalidade e dados visuais.

3.1 Base de dados Jogo da Velha

O primeiro conjunto corresponde ao jogo da velha, um problema

clássico e de baixa complexidade, amplamente utilizado em

estudos de inteligência artificial. A base de dados, construída

especificamente para este trabalho, contém vetores representando

diferentes estados do tabuleiro e suas respectivas jogadas ideais,

determinadas pelo algoritmo Minimax.

Esta base, então, é composta por um total de 6617 posições

possíveis (através de jogadas legais) para o tabuleiro do jogo e, para

cada posição, o vetor de saída esperado (𝑌𝑖) representa em qual

quadrado os jogadores devem jogar. No caso, os quadrados são

rotulados de 1 a 9, de forma que a camada de saída tem 9 neurônios.

Para o treinamento, foi utilizada uma rede neural com quatro

camadas, composta por 18 neurônios na camada de entrada

(representando o estado do tabuleiro), 130 e 100 neurônios nas duas

camadas ocultas, respectivamente, e 9 neurônios na camada de

saída (representando a jogada a ser efetuada).

3.2 Base de dados MNIST

O segundo conjunto é o MNIST (Modified National Institute of

Standards and Tchnology), que consiste em 70.000 imagens de

dígitos manuscritos (60.000 para treinamento e 10.000 para teste),

cada uma com 28x28 pixels em tons de cinza. Esta base de dados

funciona da seguinte maneira: cada imagem representa um número

de 0 a 9. As imagens possuem dimensão de 28x28 pixels em escala

de cinza, totalizando 784 características (pixels) por amostra, e cada

pixel possui um valor de intensidade que varia de 0 (preto) a 1

(branco).

Durante o treinamento, cada imagem é associada a um rótulo que

indica o dígito correspondente, permitindo que os algoritmos

aprendam a mapear os padrões visuais para suas respectivas

classes. A base foi obtida a partir de um código disponibilizado no

MATLAB Central File Exchange, desenvolvido por [6]. Para o

treinamento, foi utilizada uma rede neural com quatro camadas,

composta por 784 neurônios na camada de entrada, 80 e 60

neurônios nas duas camadas ocultas, respectivamente, e 10

neurônios na camada de saída (representando cada digito de 0 a 9).

3.3 Base de dados CIFAR-10

O terceiro conjunto é o CIFAR-10, composto por 60.000 imagens

coloridas (32x32 pixels, RGB) distribuídas entre 10 classes: avião,

automóvel, pássaro, gato, cervo, cachorro, sapo, cavalo, navio e

caminhão. As imagens apresentam variações em cor, posição,

fundo e iluminação, o que torna o problema de classificação mais

desafiador.

Essa base exige que os algoritmos capturem características

discriminantes em um contexto visual complexo, com classes

semelhantes entre si. Para o treinamento, foi utilizada uma rede

neural com quatro camadas, composta por 3072 neurônios na

camada de entrada, 80 e 60 neurônios nas duas camadas ocultas,

respectivamente, e 10 neurônios na camada de saída. A base de

dados foi obtida no site oficial do Canadian Institute for Advanced

Research (CIFAR-10), mantido pela Universidade de Toronto,

onde o conjunto é disponibilizado em diferentes formatos.

3.4 Base de dados Covertype

O quarto conjunto utilizado é o Covertype, composto por mais de

580.000 amostras tabulares, cada uma com 54 atributos, sendo 10

contínuos relacionados a características geográficas (como

elevação, inclinação, distâncias a rios, estradas e áreas de incêndio)

e 44 binários que indicam tipos de área selvagem e tipos de solo. O

objetivo é prever o tipo de cobertura florestal entre sete classes:

Spruce/Fir, Lodgepole Pine, Ponderosa Pine, Cottonwood/Willow,

Aspen, Douglas-fir e Krummholz.

Trata-se de um problema que envolve dados de alta

dimensionalidade, com variáveis heterogêneas e escalas variadas.

Para o treinamento, foi utilizada uma rede neural com quatro

camadas, composta por 54 neurônios na camada de entrada, 80 e

60 neurônios nas duas camadas ocultas e 7 neurônios na camada de

saída, correspondentes às sete classes. A base de dados foi obtida

no repositório público UCI Machine Learning Repository, mantido

pela Universidade da Califórnia, Irvine, onde o conjunto é

disponibilizado em formato texto, contendo registros tabulares

prontos para aplicações em aprendizado de máquina.

Para uma avaliação comparativa equilibrada entre os algoritmos de

treinamento, todas as redes neurais foram treinadas por 100 épocas

em cada conjunto de dados. Essa abordagem permite observar tanto

o comportamento inicial dos algoritmos quanto sua convergência

em um horizonte de treinamento prolongado. Para os algoritmos

baseados em momentos adaptativos (ADAM e ADAGRAD), foram

fixados os seguintes hiperparâmetros, conforme recomendações da

literatura e práticas estabelecidas:

- 𝜀 (epsilon) = 1×10⁻⁸ (termo de regularização para estabilidade

numérica)

- 𝛽₁ = 0,9 (fator de decaimento para o momento de primeira ordem)

- 𝛽₂ = 0,999 (fator de decaimento para o momento de segunda

ordem)

A taxa de aprendizagem (conforme ilustrado no Quadro 3) foi

sistematicamente variada em um intervalo amplo para avaliar a

sensibilidade dos algoritmos a este parâmetro. Foram testados sete

valores distintos:

Quadro 3: Taxas de Aprendizagem utilizadas.

Taxas de Aprendizagem (𝛼)

0,1 0,05 0,01 0,005 0,001 0,0005 0,0001

Esta abordagem permite identificar tanto a faixa ótima de taxas de

aprendizagem para cada algoritmo-conjunto de dados quanto sua

robustez a ajustes deste parâmetro.

4. ANÁLISE E DISCUSSÃO DOS

RESULTADOS

Nesta seção, são apresentados e discutidos os resultados obtidos a

partir da comparação entre quatro algoritmos de otimização: SGD

(Stochastic Gradient), ADAGRAD, ADAM e WEGRAD. As

métricas de avaliação incluem acurácia (em termos de jogadas

erradas e percentual de erro) e desempenho geral (média e desvio

padrão).

66

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 61-69, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

4.1 Resultados para a base de dados Jogo da

Velha

No Quadro 4, apresentamos os resultados do número de erros para

a base Jogo da Velha a partir da comparação entre quatro

algoritmos de otimização: SGD (Stochastic Gradient),

ADAGRAD, ADAM e WEGRAD.

Quadro 4: Número de erros para base Jogo da Velha.

A
C

U
R

Á
C

IA

(N
Ú

M
E

R
O

 D
E

 E
R

R
O

S
)

𝜶 ADAM ADAGRAD WEGRAD SGD

0.1 5965.0 461.0 4991.0 555.0

0.05 5965.0 984.0 2.0 812.0

0.01 104.0 3442.0 449.0 3632.0

0.005 73.0 3661.0 1209.0 5365.0

0.001 777.0 5451.0 4073.0 5505.0

0.0005 1454.0 5451.0 4754.0 5480.0

0.0001 3588.0 5451.0 5493.0 5470.0

Média 2560.9 3557.3 2995.9 3831.3

Desvio Padrão 2609.7 2121.0 2349.1 2252.7

Melhor 73.0 461.0 2.0 555.0

O método WEGRAD destacou-se como o mais eficiente para o

problema em questão, alcançando o menor número de jogadas

erradas (apenas 2) com uma taxa de aprendizado de 0,05. Esse

resultado sugere que o WEGRAD é particularmente adequado para

problemas de menor escala, como o Jogo da Velha, devido à sua

capacidade de realizar ajustes precisos com taxas de aprendizado

intermediárias.

O ADAM também apresentou bons resultados, especialmente em

taxas menores (0,01 e 0,005), demonstrando robustez em diferentes

configurações. Por outro lado, ADAGRAD e SGD tiveram

desempenho inferior, registrando um alto número de erros em taxas

de aprendizado reduzidas. Esse comportamento pode indicar

instabilidade ou convergência lenta, limitando sua eficácia nesse

contexto.

Em resumo, enquanto o WEGRAD mostrou-se a melhor escolha

para otimização neste cenário, o ADAM surge como uma

alternativa viável, especialmente em configurações mais

conservadoras. Já ADAGRAD e SGD pode demandar ajustes

adicionais para um melhor resultado.

No Quadro 5, apresentamos o número de acertos (acurácia) para a

base de dados Jogo da Velha, a partir da comparação entre quatro

algoritmos de otimização: SGD (Stochastic Gradient),

ADAGRAD, ADAM e WEGRAD.

Quadro 5: Número de acertos (acurácia) para base de dados Jogo

da Velha

A
C

U
R

Á
C

IA

 (
%

 A
C

E
R

T
O

)

𝜶 ADAM ADAGRAD WEGRAD SGD

0.1 9.85% 93.03% 24.57% 91.61%

0.05 9.85% 85.13% 99.97% 87.73%

0.01 98.43% 47.98% 93.21% 45.11%

0.005 98.90% 44.67% 81.73% 18.92%

0.001 88.26% 17.62% 38.45% 16.81%

0.0005 78.03% 17.62% 28.15% 17.18%

0.0001 45.78% 17.62% 16.99% 17.33%

Média 61.30% 46.24% 54.72% 42.10%

Desvio Padrão 39.44% 32.05% 35.50% 34.04%

Melhor 98.90% 93.03% 99.97% 91.61%

O WEGRAD demonstrou superioridade no problema do Jogo da

Velha, alcançando 99,97% de acerto com uma taxa de aprendizado

de 0,05. Esse resultado sugere que o método proposto é altamente

eficiente em problemas discretos e de pequena escala, onde a

adaptabilidade do WEGRAD a diferentes taxas de aprendizado se

mostrou vantajosa.

Em contraste, o ADAM apresentou o pior desempenho (9,9% de

acerto para taxa de 0,1), indicando alta sensibilidade a taxas de

aprendizado elevadas. No entanto, seu desempenho melhorou

significativamente em taxas mais baixas (97,3% para 0,005), o que

sugere que o ADAM requer um ajuste fino para ser eficaz.

Os métodos ADAGRAD e SGD tiveram desempenho

intermediário, com médias de acurácia em torno de 85%. O SGD

mostrou maior consistência, enquanto o ADAGRAD apresentou

maior variabilidade dependendo da taxa de aprendizado.

4.2 Resultados para a base de dados CIFAR-

10

No Quadro 6, apresentamos os resultados do número de erros para

a base de dados CIFAR-10, a partir da comparação entre quatro

algoritmos de otimização: SGD (Stochastic Gradient),

ADAGRAD, ADAM e WEGRAD.

Quadro 6: Número de erros para base de dados CIFAR-10.

A
C

U
R

Á
C

IA

(N

Ú
M

E
R

O
 D

E

E
R

R
O

S
)

𝜶 ADAM ADAGRAD WEGRAD SGD

0.1 45000 24458 45000 28520

0.05 45024 20414 45000 26834

0.01 44975 21913 29864 21890

0.005 45179 27518 27820 22106

67

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 61-69, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

0.001 26059 40247 17260 30244

0.0005 22224 41571 18813 39411

0.0001 24921 45074 25592 44822

Média 36197.43 31599.29 29907.00 30546.71

Desvio Padrão 11092.87 10347.11 11266.45 8626.77

Melhor 22224 20414 17260 21890

O WEGRAD apresentou o melhor desempenho pois obteve o

menor número de erros (17.260) com taxa de 0,001, seguido por

ADAGRAD (20414 com taxa 0,05). ADAM e SGD apresentaram

desempenho consistente, mas não superaram os outros métodos.

O ADAM, assim como, o WEGRAD, apresentaram os piores

resultados em taxas altas, com erros próximos ao máximo (60.000

amostras).

Para conjuntos de dados mais complexos como CIFAR-10, SGD e

ADAGRAD foram mais robustos, especialmente em taxas de

aprendizado intermediárias. O WEGRAD destacou-se com a

melhor média e o melhor caso, sugerindo, ainda que

provisoriamente, que o método é capaz de desempenhar bem

também em conjuntos de dados maiores, conforme ilustrado no

Quadro 7.

Quadro 7: Número de acertos (acurácia) para base de dados

CIFAR-10

A
C

U
R

Á
C

IA

(%

 A
C

E
R

T
O

)

𝜶 ADAM ADAGRAD WEGRAD SGD

0.1 25.00% 59.24% 25.00% 52.47%

0.05 24.96% 65.98% 25.00% 55.28%

0.01 25.04% 63.48% 50.23% 63.52%

0.005 24.70% 54.14% 53.63% 63.16%

0.001 56.57% 32.92% 71.23% 49.59%

0.0005 62.96% 30.72% 68.65% 34.32%

0.0001 58.47% 24.88% 57.35% 25.30%

Média 39.67% 47.33% 50.16% 49.09%

Desvio Padrão 18.49% 17.25% 18.78% 14.38%

Melhor 62.96% 65.98% 71.23% 63.52%

Para o conjunto CIFAR-10, que representa um problema mais

complexo (classificação de imagens coloridas), o WEGRAD

obteve a maior acurácia (71,23% para taxa de 0,001), seguido pelo

ADAGRAD (65,98% para taxa de 0,05). Esse resultado indica que

o método proposto se mostrou competitivo frente aos métodos

adaptativos existentes.

O ADAM teve o pior desempenho inicial (25% para taxa de 0,1),

mas melhorou em taxas menores (62,9% para 0,0005), reforçando

sua dependência de hiperparâmetros cuidadosamente selecionados.

4.3 Resultados para a base de dados MNIST

No Quadro 6, apresentamos os resultados do número de erros para

a base de dados MNIST, a partir da comparação entre quatro

algoritmos de otimização: SGD (Stochastic Gradient),

ADAGRAD, ADAM e WEGRAD.

Quadro 8: Número de erros para base de dados MNIST.

A
C

U
R

Á
C

IA

 (
N

Ú
M

E
R

O
 D

E
 E

R
R

O
S

)

𝜶 ADAM ADAGRAD WEGRAD SGD

0.1 54149 249 38090 124

0.05 54077 283 1597 127

0.01 1314 1836 4 281

0.005 299 4627 10 459

0.001 195 42056 22 2630

0.0005 216 53258 87 5653

0.0001 874 53258 2739 53258

Média 15874.86 22223.86 6078.43 8933.14

Desvio Padrão 26124.77 25849.43 14155.55 19651.13

Melhor 195.00 249.00 4.00 124.00

WEGRAD novamente se destacou, com apenas 4 erros em taxa

0.01, seguido por SGD (124 erros em taxa 0,1). ADAM teve bom

desempenho com taxas menores (195 erros com taxa de 0,001). O

método ADAGRAD teve alta variabilidade, com erros elevados em

taxas baixas (53.258 erros).

A relativa robustez do método WEGRAD na base de dados MNIST

reforça a ideia de que o método pode ser competitivo. A ilustração

de tais resultados está presente no Quadro 9.

Quadro 9: Número de acertos (acurácia) para base de dados

MNIST.

A
C

U
R

Á
C

IA

(%

A

C
E

R
T

O
S

)

𝜶 ADAM ADAGRAD WEGRAD SGD

0.1 9.74% 97.07% 37.51% 97.66%

0.05 10.32% 97.12% 95.57% 97.75%

0.01 96.26% 95.91% 97.97% 97.70%

0.005 97.27% 91.80% 97.93% 97.42%

0.001 96.97% 30.24% 97.60% 95.10%

0.0005 96.89% 11.35% 97.32% 90.83%

68

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 61-69, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

0.0001 96.89% 11.35% 94.80% 11.35%

Média 72.05% 62.12% 88.39% 83.97%

Desvio Padrão 42.37% 42.11% 22.47% 32.12%

Melhor 97.27% 97.12% 97.97% 97.75%

No MNIST, o WEGRAD novamente se destacou, atingindo

97,97% de acerto com taxa de 0,01, o melhor resultado entre todos

os algoritmos testados. Esse desempenho reforça a eficácia do

método em problemas balanceados e de classificação simples.

O SGD também apresentou excelentes resultados 97,75% para taxa

de 0,05, demonstrando robustez em diferentes taxas de

aprendizado.

O ADAGRAD, por outro lado, teve um colapso de desempenho em

taxas baixas (11,35% para ≤ 0,0005), indicando que seu mecanismo

de adaptação pode ser instável em certos regimes de treinamento.

4.4 Resultados para a base de dados

COVERTYPE

No Quadro 10, apresentamos os resultados do número de erros para

a base de dados COVERTYPE, a partir da comparação entre os

quatro algoritmos de otimização: SGD (Stochastic Gradient),

ADAGRAD, ADAM e WEGRAD.

Quadro 10: Número de erros para base de dados COVERTYPE.

A
C

U
R

Á
C

IA

(N

Ú
M

E
R

O
 D

E
 E

R
R

O
S

)

𝜶 ADAM ADAGRAD WEGRAD SGD

0.1 297701 90991 578253 68426

0.05 315675 104647 563933 65313

0.01 110858 150350 77853 61464

0.005 64862 157628 80541 66218

0.001 47284 167715 114330 112019

0.0005 52442 194868 132127 127732

0.0001 93261 297706 175289 160637

Média 140297.51 166272.14 246046.57 94544.14

Desvio Padrão 115964.63 68176.01 224509.70 39175.57

Melhor 47284 90991 77853 61464

ADAM obteve o menor número de erros absoluto (47284 erros com

taxa de 0,001), seguido por SGD (61.464 erros com taxa de 0,01).

WEGRAD teve desempenho variável, com resultados ruins em

taxas altas, mas competitivos em taxas intermediárias (77.853 com

0,01). O SGD mostrou-se mais estável para conjuntos de dados

grandes e esparsos como COVERTYPE, enquanto ADAM E

WEGRAD podem requerer ajustes mais cuidadosos das taxas. Veja

o Quadro 11.

Quadro 11: Número de acertos (acurácia) para base de dados

COVERTYPE

A
C

U
R

Á
C

IA

(%

 A
C

E
R

T
O

S
)

𝜶 ADAM ADAGRAD WEGRAD SGD

0.1 48.76% 84.34% 0.47% 88.22%

0.05 45.67% 81.99% 2.94% 88.76%

0.01 80.92% 74.12% 86.60% 89.42%

0.005 88.84% 72.87% 86.14% 88.60%

0.001 91.86% 71.13% 80.32% 80.72%

0.0005 90.97% 66.46% 77.26% 78.02%

0.0001 83.95% 48.76% 69.83% 72.35%

Média 83.95% 72.87% 77.26% 88.22%

Desvio Padrão 19.96% 11.73% 38.64% 6.74%

Melhor 91.86% 94.34% 86.60% 89.42%

Para o conjunto COVERTYPE, que possui um desbalanceamento

significativo entre classes, o ADAM obteve o melhor desempenho

(91,86% para taxa = 0,001), seguido pelo SGD (89,42% para taxa

de 0,01).

O ADAM teve baixa acurácia em taxas altas (48,8% para 0,1), mas

melhorou em taxas menores (83,9% para 0,0001), confirmando sua

sensibilidade à mudança de parâmetros.

O WEGRAD apresentou instabilidade, mas apresentou média

próxima aos demais algoritmos.

4.5 Comentário geral dos resultados

Os resultados experimentais revelaram diferenças significativas no

desempenho dos quatro algoritmos avaliados. O WEGRAD,

método proposto neste estudo, destacou-se como o mais robusto,

superando os demais em três dos quatro conjuntos de dados

testados. Seu desempenho ótimo foi observado em taxas de

aprendizado intermediárias (0,01 a 0,001), nas quais demonstrou

notável capacidade de equilibrar velocidade de convergência e

precisão. No Jogo da Velha, por exemplo, alcançou 99,97% de

acerto com taxa de 0,05, enquanto no MNIST registrou apenas 4

erros com taxa 0,01, comprovando sua eficácia especialmente em

problemas de média e pequena escala.

O SGD apresentou desempenho confiável em conjuntos de dados

maiores e mais complexos, como CIFAR-10 e COVERTYPE, nas

quais sua simplicidade algorítmica mostrou-se vantajosa. No

entanto, seu comportamento foi mais instável em outros contextos,

exigindo ajuste fino da taxa de aprendizado para atingir

desempenho ideal. Na base de dados COVERTYPE, em particular,

manteve erro abaixo de 16% em todas as taxas testadas,

demonstrando boa estabilidade.

69

Revista de Sistemas e Computação, Salvador, v. 15, n. 3, p. 61-69, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

O ADAM, por sua vez, mostrou consistência em diversas

configurações, especialmente com taxas baixas (0,001 a 0,0001),

embora raramente tenha alcançado os melhores resultados

absolutos. Sua robustez o torna uma opção segura para aplicações

gerais, mas nossa análise indica que existem alternativas mais

eficientes para problemas específicos.

 O ADAGRAD apresentou os resultados mais limitados, com

desempenho satisfatório apenas em taxas altas (0,1) e degradação

acentuada em valores menores. Essa limitação parece estar

relacionada ao seu mecanismo de adaptação de taxa, que

rapidamente diminui o passo de aprendizado, comprometendo sua

utilidade prática na maioria dos cenários.

5. CONCLUSÃO E CONSIDERAÇÕES

FINAIS

Os resultados obtidos permitem concluir que o algoritmo

WEGRAD apresentou desempenho competitivo e, em alguns

casos, superior aos métodos tradicionais, especialmente em

problemas de média e pequena escala. No Jogo da Velha e no

MNIST, o WEGRAD não apenas superou os demais em termos de

acurácia, como também apresentou menor número de erros (erro

absoluto), demonstrando robustez na tarefa de classificação e uma

excelente capacidade de generalização quando configurado com

taxas de aprendizado intermediárias.

No entanto, para bases de dados grandes, como CIFAR-10 e

COVERTYPE, o desempenho do WEGRAD mostrou-se mais

sensível à mudança das taxas de aprendizado. Apesar disso, o

método foi capaz de alcançar resultados competitivos e, em alguns

casos, superiores aos demais métodos como no caso da base de

dados CIFAR-10, sugerindo que a estratégia de ponderação dos

gradientes pode ser promissora também em cenários mais

desafiadores, desde que acompanhada de um ajuste criterioso dos

parâmetros.

Diante dos resultados apresentados, o algoritmo WEGRAD

constitui uma contribuição relevante para o campo de otimização

de redes neurais, oferecendo uma alternativa viável,

particularmente eficaz em problemas nos quais o balanceamento do

aprendizado sobre amostras difíceis é determinante para o sucesso

do treinamento. Ressalta-se, entretanto, que o método carece de

investigações adicionais, especialmente no que se refere à

otimização dos parâmetros e à análise de sua escalabilidade em

arquiteturas mais profundas e em bases massivas.

O método apresentado foi comparado com alguns algoritmos já

bem estabelecidos na literatura. Os resultados mostram que, sob as

medidas de desempenho relacionadas com a acurácia (número total

de erros, percentual de acerto) o método é promissor, mas estudos

com um número maior de épocas e mais bases de dados são

necessários para afirmar com maior certeza.

Durante a implementação do método, diversas alternativas de

aperfeiçoamento e melhoramento foram cogitadas, uma vez que o

método é relativamente simples e outras estratégias podem ser

combinadas com a ideia de utilizar um gradiente ponderado. O uso

de momentos e de um ajuste dinâmico do fator de penalidade em

termos da acurácia da rede em cada época são as ideias mais

promissoras para futuros trabalhos.

Uma análise mais detalhada da comparação da ordem de

complexidade, número de operações e tempo de execução com os

outros métodos também são fatores importantes a serem abordados

em trabalhos futuros.

6. REFERÊNCIAS

[1] BLACKARD, J. A.; DEAN, D. J.; ANDERSON, R. S.

Covertype Data Set. UCI Machine Learning Repository, 1998.

Disponível em:

https://archive.ics.uci.edu/ml/datasets/covertype. Acesso em:

01 janeiro 2025.

[2] DEAN, Jeffrey et al. Large scale distributed deep networks.

Advances in Neural Information Processing Systems, [S. l.],

v. 25, p. 1223-1231, out. 2012.

[3] HAYKIN, Simon. Redes neurais: princípios e prática. In:

HAYKIN, Simon. Redes neurais: princípios e prática. 2. ed.

Porto Alegre: Bookman, 2001.

[4] KRIZHEVSKY, A. Learning Multiple Layers of Features

from Tiny Images. Technical Report, University of Toronto,

2009. Disponível em:

https://www.cs.toronto.edu/~kriz/cifar.html. Acesso em: 01

janeiro 2025.

[5] KINGMA, Diederik P.; BA, Jimmy Lei. Adam: a method for

stochastic optimization. International Conference on Learning

Representations, San Diego, v. 1, p. 1-15, 2015.

[6] LANGELAAR, Johannes. MNIST neural network training

and testing. MATLAB Central File Exchange, 2025.

Disponível em:

https://www.mathworks.com/matlabcentral/fileexchange/730

10-mnist-neural-network-training-and-testing. Acesso em: 01

janeiro 2025.

[7] OJHA, Varun; NICOSIA, Giuseppe. Backpropagation neural

tree. Neural Networks, [S. l.], v. 149, p. 66–83, 2022.

SILVA, SPATTI, FLAUZINO. Redes neurais artificiais para

engenharia e ciências aplicadas: Curso prático. 1. ed. São Paulo:

Artliber, 2010

https://archive.ics.uci.edu/ml/datasets/covertype
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.mathworks.com/matlabcentral/fileexchange/73010-mnist-neural-network-training-and-testing
https://www.mathworks.com/matlabcentral/fileexchange/73010-mnist-neural-network-training-and-testing

