Uma proposta de algoritmo para treinamento de redes
neurais artificiais: primeiros resultados em uma
comparacao com SGD, Adam e AdraGrad

Jean Vinicius da Silva
Montanari
Graduando em Matematica

Universidade do Estado de Mato
Grosso (UNEMAT)

Luciana Mafalda Elias de Assis
Professora da Universidade do
Estado de Mato Grosso (UNEMAT)
Campus de Sinop - MT

luciana.assis@unemat.br

Raul Abreu de Assis

Professor da Universidade do
Estado de Mato Grosso (UNEMAT)
Campus de Sinop - MT

raul.assis@unemat.br

Campus de Sinop - MT
vinicius.montanari@unemat.br

ABSTRACT

This paper presents a new supervised training algorithm for
artificial neural networks, developed with the aim of improving
network performance in classification tasks, where accuracy is
crucial. The method is compared with the optimization algorithms
Stochastic Gradient Descent, ADAM, and ADAGRAD.
Experiments were conducted using different datasets and network
architectures. The metrics used for evaluation were the number of
errors and accuracy during the training and testing phases. The
results indicate that the proposed method shows competitive
performance, with specific advantages in certain contexts, making
it a promising alternative to traditional optimization algorithms.

Keywords

Neural networks; Optimization; Training; Machine learning.

RESUMO

Este artigo apresenta um novo algoritmo de treinamento
supervisionado para redes neurais artificiais, desenvolvido com o
objetivo de melhorar o desempenho de redes em tarefas de
classificacdo, em que a acurdcia ¢ fundamental. O método ¢
comparado aos algoritmos de otimiza¢do Stochastic Gradient
Descent, ADAM e ADAGRAD. Foram realizados experimentos
com diferentes conjuntos de dados e arquiteturas de rede. As
métricas utilizadas para avaliacdo foram o niimero de erros e a
acuracia, durante as fases de treinamento e teste. Os resultados
indicam que o método proposto apresenta desempenho
competitivo, com vantagens especificas em determinados
contextos, sendo uma alternativa promissora aos algoritmos
tradicionais de otimizagdo.

Palavras-chave
Redes neurais; Otimizagdo; Treinamento; Aprendizado de
Magquina.Neural.

1. INTRODUCAO

O avango das redes neurais artificiais tem impulsionado
significativamente o desenvolvimento de solugdes na area de
aprendizado de maquina, especialmente em tarefas como
classificacdo, reconhecimento de padrdes e processamento de
dados complexos.

O desempenho dessas redes esta diretamente relacionado a escolha
de algoritmos de otimizag@o capazes de ajustar os parametros do

modelo de forma eficiente, garantindo uma boa capacidade de
generalizagdo.

Este trabalho aborda especificamente uma proposta de algoritmo de
treinamento supervisionado em tarefas de classificagdo. Uma
comparagdo ¢ feita com os algoritmos de treinamentos baseados no
Gradiente Estocastico com Minilotes, uma técnica amplamente
utilizada por proporcionar equilibrio entre estabilidade na
convergéncia e custo computacional.

Além desse método, também sdo analisados algoritmos adaptativos
como ADAM e ADAGRAD. Nossa proposta de algoritmo,
denominada WEGRAD, introduz um mecanismo de ponderagao do
gradiente com o objetivo de melhorar o desempenho com foco na
acurécia, isto €, a classificagdo de forma correta do maior nimero
possivel de pontos da base de dados.

A escolha desse objeto de estudo justifica-se pela ampla utilizagdo
das redes neurais em diferentes areas e pela necessidade constante
de aprimorar os métodos de treinamento, tornando-os mais
eficientes, precisos e capazes de lidar com diferentes tipos de dados
e problemas. Estudar e compreender o comportamento desses
algoritmos ¢ essencial para o desenvolvimento de modelos mais
robustos e eficientes.

Dessa forma, o objetivo deste trabalho ¢é analisar, propor e
comparar algoritmos de otimizagdo aplicados ao treinamento de
redes neurais, avaliando seus desempenhos com foco na acuracia,
em diferentes bases de dados e variando um parametro
fundamental, a taxa de aprendizagem.

2. FUNDAMENTACAO TEORICA

Os modelos de redes utilizadas neste trabalho serdo baseados em
redes do tipo perceptron, que revisamos rapidamente, a seguir.

2.1 Rede Perceptron

Segundo [8], o Perceptron, idealizado por Rosenblatt em 1958, é a
forma mais simples de uma rede neural artificial, inspirado na retina
e utilizado para reconhecer padrdes geométricos.

A Figura 1(adaptada de [8], p.58), ilustra uma rede Perceptron
constituida de n sinais de entrada, representativas do problema a

61

Revista de Sistemas e Computacdo, Salvador, v. 15, n. 3, p. 61-69, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

mailto:vinicius.montanari@unemat.br
mailto:luciana.assis@unemat.br
mailto:raul.assis@unemat.br

ser mapeado, e somente uma saida, pois a mesma ¢é constituida de
somente um Gnico neurdnio.

Apesar de ser uma rede considerada simples, o Perceptron
despertou grande interesse da comunidade cientifica desde sua
proposicdo, atraindo pesquisadores interessados no potencial da
area de redes neurais e inteligéncia artificial [8].

Figura 1: Tlustragdo da rede Perceptron.

Em termos matematicos, o processamento interno realizado pelo
Perceptron pode ser descrito pelas seguintes expressoes:

u=3Txw; +v, (1

na qual v ¢ chamado de pardmetro de “viés” e w; sdo chamados
“pesos sinapticos”. O sinal do neurénio ¢ dado entdo através de uma
fungéo de ativagdo g(u) :

y=9gw.)

No primeiro passo do funcionamento do Perceptron, ¢ realizado o
calculo do potencial de ativagdo do neurodnio, representado por u.
Esse valor ¢ obtido por meio do somatério ponderado dos sinais de
entrada, em que cada entrada x; ¢ multiplicada pelo respectivo peso
sinaptico wj;, refletindo importancia daquela entrada para o
processo de decisdo do neurdnio. A esse somatorio ¢ adicionado o
termo de viés v, responsavel por deslocar a fungdo de ativagao,
permitindo a rede ajustar sua fronteira de decisdo mesmo quando
todos os valores de entrada forem nulos. Dessa forma, o Perceptron
simples se apresenta como um modelo fundamental para o
entendimento das redes neurais, sendo capaz de realizar
classificacdes lineares com base em uma combinagdo ponderada
das entradas e uma funcdo de ativagdo.

2.2 Redes Perceptron Multicamadas

A fim de superar as limitagdes do Perceptron simples, foi
desenvolvido o Perceptron Multicamadas. Segundo [8] (p.91), “As
Redes Perceptron de multiplas camadas (PMC) sdo caracterizadas
pela presenca de pelo menos uma camada intermedidria
(escondida) de neurdnios, situada entre a camada de entrada e a
respectiva camada neural de saida.”

A Figura 2 (retirada de [8], p.92), representa uma estrutura
pertencente a arquitetura feedforward. Nessa configuragdo, o
funcionamento da rede neural ocorre de forma sequencial, em que
as saidas de uma camada s3o utilizadas como entradas para a
camada seguinte, até atingir a camada final [3].

De acordo com [8] (p. 93), “os estimulos ou sinais sdo apresentados
a rede em sua de entrada [...] os neurdnios da camada de saida
recebem os estimulos advindos dos neurdnios da tltima camada

intermediaria, produzindo um padrdo de resposta que sera a saida
disponibilizada pela rede”.

Entradas Sagj’;é
do PMC 0
Camada neural
Camada de de saida
entrada

22 Camada Neural
Escondida

12 Camada Neural
Escondida

Figura 2: Representacdo de redes Perceptron Multicamadas.

Diferentemente do Perceptron simples, em que um tinico neurénio
realiza o mapeamento concentrado do processo, as redes
Perceptron Multicamadas (PMC) distribuem o conhecimento
relacionado ao comportamento entrada/saida entre todos os seus
neurdnios. Nesse contexto, o problema real ¢ modelado tanto pela
camada de entrada, que recebe os estimulos iniciais, quanto pela
camada de saida, que gera a resposta esperada.

2.3 Treinamento Supervisionado

O treinamento supervisionado ¢ uma das estratégias mais utilizadas
no campo do aprendizado de maquina e consiste em fornecer a rede
neural um conjunto de dados de entrada com as respectivas saidas
desejadas, denominados exemplos rotulados.

Conforme descrito por [8], essa abordagem exige a
disponibiliza¢@o de uma tabela de dados representativa, contendo
os sinais de entrada e suas correspondentes saidas desejadas. Essa
tabela, também conhecida como tabela de atributos/valores, deve
ser capaz de refletir o comportamento do sistema a ser modelado,
fornecendo subsidios suficientes para que as estruturas neurais
possam formular “hipoteses” sobre o que se deve ser aprendido.

Nosso método aplica-se onde a tarefa da rede ¢ classificar os dados
em um conjunto discreto de classes. No caso em que temos m
classes trabalhamos com m neurdnios na camada de saida. Uma
possivel interpretagdo para o estado dos neurdnios da camada de
saida é a probabilidade de um certo dado estar na classe
correspondente ao neurdnio. Para a tarefa de classificagdo costuma-
se simplesmente classificar um dado na classe com a maior
probabilidade correspondente.

2.4 Algoritmo Gradiente Estocastico com
Minilote (SGD)

E um algoritmo fundamental para o treinamento de redes neurais
artificiais. Seu funcionamento baseia-se na aplicagdo da regra da
cadeia do Calculo Diferencial para calcular o gradiente do erro em
relag@o aos pesos da rede.

O processo inicia-se na camada de saida, onde o erro entre a saida
produzida pela rede e a saida desejada é calculado. Em seguida,
esse erro ¢ propagado para tras através das camadas da rede,
ajustando os pesos de forma a minimizar a fungo de custo. Esse

62

Revista de Sistemas e Computacdo, Salvador, v. 15, n. 3, p. 61-69, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

ajuste ¢ realizado com base em um algoritmo de otimiza¢do, como
o gradiente descendente, que utiliza as derivadas parciais do erro
para cada peso, atualizando-os de maneira proporcional ao valor
desses gradientes. O objetivo é reduzir gradualmente o erro da rede
ao longo de varias iteracdes do algoritmo, chamadas de “épocas”
de treinamento.

Para otimizar o processo de treinamento e equilibrar o custo
computacional com a estabilidade da convergéncia, ¢ comum
empregar a retropropagacdo com minilotes. Nessa abordagem, o
conjunto de dados de treinamento ¢ dividido em pequenos
subconjuntos de amostras, denominados minilotes. As atualizagdes
dos parametros sdo feitas, entdo, apds a retropropagagdo ser
realizada em cima de cada minilote.

2.5 Algoritmo ADAGRAD

De acordo com [2] e [7], o ADAGRAD ¢ um algoritmo que realiza
a adaptagdo individual das taxas de aprendizado para cada
parametro do modelo, com base na soma acumulada dos quadrados
dos gradientes. Esse mecanismo permite que pardmetros que
recebem atualizagdes frequentes tenham suas taxas de aprendizado
progressivamente reduzidas, enquanto pardmetros menos
atualizados mantém taxas relativamente maiores. No Quadro 1,
apresentamos os passos requeridos pelo algoritmo ADAGRAD.

Quadro 1: Algoritmo ADAGRAD

Etapa | Descri¢do: Inicializar parametros

1 Férmula / Acdo: 6,<Valores iniciais

Etapa | Descri¢io: Inicializar acumulador de gradientes ao
quadrado

Férmula / Acdo: Gy< 0

Etapa | Descricio: Para cada iterago t=1 até T:

3 Formula / A¢do: —

Etapa | Descricdo: Gradiente da funcdo de custo em relacdo
31 af

Formula / Acdo: g,=VyC(0;_1)

Etapa | Descricio: Acumulador com os quadrados dos
12 gradientes

Formula / A¢do: G, = G,_1 + g: O g¢

Etapa | Descricdo: Atualizar os parametros com taxa
313 adaptativa

Férmula / A¢do: 6, = 6,_, — \/&Ogt

O vetor 8 representa os pardmetros do modelo, ou seja, os pesos e

vieses que sdo otimizados durante o treinamento. A taxa de
aprendizado, denotada por a, controla o tamanho dos passos dados
na diregdo oposta ao gradiente. Sendo 6, os parametros (Pesos e
Vieses) iniciais da rede, G; ¢ o acumulador das componentes dos
gradientes ao quadrado, g; o gradiente para funcdo de custo em
relagdo a cada parametro 6y, t ¢ o indice do minilote, 8; o conjunto
completo de parametros da rede (pesos sinapticos e vieses) depois
da iteracdo no minilote t, € uma constante pequena para evitar
divisdo por 0. Vale ressaltar que a operagdo © representa uma
multiplicacdo componente por componente. A fungdo de custo C ¢
definida como:

C=310:—1)? 3)

A fungido calcula o somatorio dos erros quadraticos entre a saida
prevista pela rede y; e a saida desejada (rotulo) Y; para cada amostra
i, na qual { varia de 1 até m, que é o numero total de neurdnios na
camada de saida da rede.

2.6 Algoritmo ADAM

Proposto por [5], ¢ um otimizador baseado em descida de gradiente
estocastica que combina momentos de primeira e segunda ordem
para calcular taxas de aprendizagem adaptativas por pardmetro.
Com baixa demanda de memoria e facil implementagdo, ¢
amplamente utilizado em problemas com grandes volumes de
dados e parametros. No Quadro 1, apresentamos o0s passos
requeridos pelo algoritmo ADAM.

Quadro 2: Algoritmo ADAM.

Etapa Descri¢ao: Inicializar parametros
1 Férmula / Ac¢do: 6,<Valores iniciais
Etapa Descri¢ao: Inicializar momento
2 Férmula / A¢do: my< 0
Etapa Descri¢ao: Inicializar variancia
3 Férmula / A¢do: vy < 0
Etapa Descri¢ao: Inicializar contador de tempo
4 Férmula / A¢do: t < 0
Etapa Descri¢ao: Para cada iteragdo t =1 até T:
5 Formula / Acdo: —
Etapa Descrigao: Gradiente da fungdo de custo em
51 relagdo a 0
Férmula / Ac¢do: g,=VyC(6,_1)
Etapa Descricdo: Atualizar momento (1* média
ovel
59 movel)
Férmula / Ag¢do: m, = f; *my_; + (1 —
B1) * g¢

63

Revista de Sistemas e Computacdo, Salvador, v. 15, n. 3, p. 61-69, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

Etapa Descri¢do: Atualizar varidncia (2° média
53 movel)
Féormula / Acdo: v, =L, xv,_1 + (1 —
B2) * g¢
Etapa Descri¢ao: Corrigir o viés do momento
54 Formula / Agio: m', = —~
ormula / Agio: m'y = ———
Etapa Descri¢ao: Corrigir o viés da variancia
5.5 Formula / Agio: v'; = —=
ormula / Agio: v’y = ——
Etapa Descri¢do: Atualizar os parametros
56 0 a0: = —_ —a . !
Férmula / Acdo: 6, = 6;_, Torere m';

Os coeficientes 8; e [, sdo fatores de decaimento exponencial
utilizados para calcular médias méveis dos gradientes e de seus
quadrados, respectivamente. Para garantir estabilidade numérica e
evitar divisdes por zero, o algoritmo utiliza um pequeno valor €,
geralmente igual a 1078,

A cada iteragdo t, ¢ calculado o gradiente g, correspondente a
derivada da fung@o de custo em relacdo aos pardmetros. Em
seguida, sdo atualizados dois vetores auxiliares: o vetor de
momento m, , que armazena a média mével dos gradientes, e o
vetor de varidncia v,, que armazena a média mével dos quadrados
dos gradientes. Como tanto m, quanto v, sdo inicialmente nulos, ¢
realizada uma corregdo de viés para evitar distor¢des nos primeiros
passos. Isso gera os vetores corrigidos m'y € v'; , que sdo entdo
utilizados na atualizacdo dos parametros. A fungdo de custo C é a
mesma equagdo 3 acima.

2.7 Algoritmo Weighted Gradient / WEGRAD
(Método Proposto)

Neste trabalho, propomos um novo método de treinamento de redes
neurais, baseado no uso de minilotes e no ajuste adaptativo dos
gradientes associados a amostras incorretamente classificadas. O
objetivo ¢ tanto acelerar a convergéncia, como fugir de minimos
locais, reforcando o aprendizado sobre exemplos nos quais a rede
apresenta maior dificuldade.

O procedimento de treinamento ocorre da seguinte forma:
inicialmente, os pardmetros da rede (pesos e vieses) sdo sorteados
aleatoriamente em um intervalo pequeno centrado em zero. Em
cada época, as amostras de treinamento sdo embaralhadas e
divididas em minilotes de tamanho fixo. Dessa forma, para cada
minilote:

- Cada amostra é processada pela rede (passagem direta) e seus
gradientes sdo calculados via retropropagacao.

- O gradiente estocastico ¢ calculado somando-se a influéncia de
cada ponto de amostra do minilote, mas o peso de cada elemento
do minilote no gradiente depende se a rede conseguiu classificar a
amostra com sucesso ou ndo. Se a predi¢do da rede para a amostra
for incorreta, os gradientes correspondentes sdo multiplicados por
um fator de penalizagdo p com p = 1. Se a predicdo for correta, os

gradientes sdo acumulados normalmente. Isso cria um gradiente
ponderado, que designaremos por u, para diferencia-lo do
gradiente estocastico normal g;.

- Ao final do minilote, os parametros da rede sdo atualizados
utilizando o gradiente ponderado calculado no minilote.

- Tanto a taxa de aprendizagem quanto o peso de penalizag@o sdo
atualizados de acordo com o numero total de épocas que se deseja
treinar a rede. O indice da época sera designado por 7. De forma
que representamos () ¢ p(7) como a taxa de aprendizagem e o
fator de penalizacdo na T — ésima época respectivamente.

A atualizacdo dos parametros 8 ao final de cada minilote ¢ feita da
seguinte forma:

Oy =01 —a(r) "y €))

onde a(7) ¢ a taxa de aprendizado e u; o gradiente ponderado
calculado para o minilote t.

A titulo de ilustragdo, se u, representa a variavel de acumulagio do
gradiente ponderado para o minilote t e Au a contribuicdo de um
elemento do minilote para o gradiente. Neste caso, a atualizagdo ¢
feita da seguinte forma:

- se 0 dado esta sendo classificado de forma incorreta:
ur < up +p(7) - du (%)
- se o dado esta sendo classificado da forma correta:
U < up + Au (6)
Outra forma de escrever o célculo do gradiente ponderado ¢é:
ue = Yt w(i) - du; (7

na qual n ¢ o total de elementos em um minilote, ¢t ¢ o indice do
minilote, € w(i) = 1 se o elemento i estd sendo classificado de
modo correto e w(i) = p(7) se esta classificado de forma errada.

Além disso, o método adota duas estratégias dindmicas de ajuste da
taxa de aprendizado e o fator de penalizagdo ao longo do
treinamento. A taxa de aprendizado, decresce linearmente
conforme a época:
ao*(T—1)

e ®)
onde a ¢ a taxa de aprendizado inicial ¢ N é o numero total de
épocas em que se quer realizar o treinamento.

a(t) =ay —

O fator de penalizagdo cresce linearmente ao longo das épocas:

p() = po + k » 22D, ©
onde p, ¢ o fator de penalizagdo inicial e k € um parametro que
mede o peso da penalizagdo limitando o maximo peso da
penalizagdo. Em todas nossas simulagdes, utilizamos k = 100,
sendo que o parametro ndo foi otimizado nem sua variagdo
estudada ainda.

3. METODOLOGIA

Neste estudo, foram utilizados quatro conjuntos de dados com
diferentes caracteristicas e niveis de complexidade, com o objetivo
de comparar o desempenho dos algoritmos de treinamento SGD,
ADAM, ADAGRAD e o método proposto, WEGRAD.

64

Revista de Sistemas e Computacdo, Salvador, v. 15, n. 3, p. 61-69, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

Os dados selecionados representam distintos dominios e desafios,
desde problemas simples de decisdo até tarefas complexas de
classificagdo com alta dimensionalidade e dados visuais.

3.1 Base de dados Jogo da Velha

O primeiro conjunto corresponde ao jogo da velha, um problema
classico e de baixa complexidade, amplamente utilizado em
estudos de inteligéncia artificial. A base de dados, construida
especificamente para este trabalho, contém vetores representando
diferentes estados do tabuleiro e suas respectivas jogadas ideais,
determinadas pelo algoritmo Minimax.

Esta base, entdo, ¢ composta por um total de 6617 posicdes
possiveis (através de jogadas legais) para o tabuleiro do jogo e, para
cada posicdo, o vetor de saida esperado (Y;) representa em qual
quadrado os jogadores devem jogar. No caso, os quadrados sdo
rotulados de 1 a 9, de forma que a camada de saida tem 9 neurdnios.
Para o treinamento, foi utilizada uma rede neural com quatro
camadas, composta por 18 neurdnios na camada de entrada
(representando o estado do tabuleiro), 130 e 100 neurdnios nas duas
camadas ocultas, respectivamente, ¢ 9 neurénios na camada de
saida (representando a jogada a ser efetuada).

3.2 Base de dados MNIST

O segundo conjunto ¢ o MNIST (Modified National Institute of
Standards and Tchnology), que consiste em 70.000 imagens de
digitos manuscritos (60.000 para treinamento e 10.000 para teste),
cada uma com 28x28 pixels em tons de cinza. Esta base de dados
funciona da seguinte maneira: cada imagem representa um nimero
de 0 a2 9. As imagens possuem dimensdo de 28x28 pixels em escala
de cinza, totalizando 784 caracteristicas (pixels) por amostra, ¢ cada
pixel possui um valor de intensidade que varia de 0 (preto) a 1
(branco).

Durante o treinamento, cada imagem ¢ associada a um roétulo que
indica o digito correspondente, permitindo que os algoritmos
aprendam a mapear os padrdes visuais para suas respectivas
classes. A base foi obtida a partir de um codigo disponibilizado no
MATLAB Central File Exchange, desenvolvido por [6]. Para o
treinamento, foi utilizada uma rede neural com quatro camadas,
composta por 784 neurdnios na camada de entrada, 80 e 60
neurdnios nas duas camadas ocultas, respectivamente, e 10
neurdnios na camada de saida (representando cada digito de 0 a 9).

3.3 Base de dados CIFAR-10

O terceiro conjunto é o CIFAR-10, composto por 60.000 imagens
coloridas (32x32 pixels, RGB) distribuidas entre 10 classes: avido,
automovel, passaro, gato, cervo, cachorro, sapo, cavalo, navio e
caminhdo. As imagens apresentam variagdes em cor, posigao,
fundo e iluminagdo, o que torna o problema de classificagdo mais
desafiador.

Essa base exige que os algoritmos capturem caracteristicas
discriminantes em um contexto visual complexo, com classes
semelhantes entre si. Para o treinamento, foi utilizada uma rede
neural com quatro camadas, composta por 3072 neurénios na
camada de entrada, 80 e 60 neurdnios nas duas camadas ocultas,
respectivamente, ¢ 10 neurdnios na camada de saida. A base de
dados foi obtida no site oficial do Canadian Institute for Advanced
Research (CIFAR-10), mantido pela Universidade de Toronto,
onde o conjunto ¢ disponibilizado em diferentes formatos.

3.4 Base de dados Covertype

O quarto conjunto utilizado é o Covertype, composto por mais de
580.000 amostras tabulares, cada uma com 54 atributos, sendo 10
continuos relacionados a caracteristicas geograficas (como
elevagdo, inclinagdo, distancias a rios, estradas e areas de incéndio)
¢ 44 binarios que indicam tipos de area selvagem e tipos de solo. O
objetivo ¢ prever o tipo de cobertura florestal entre sete classes:
Spruce/Fir, Lodgepole Pine, Ponderosa Pine, Cottonwood/Willow,
Aspen, Douglas-fir e Krummholz.

Trata-se de um problema que envolve dados de alta
dimensionalidade, com variaveis heterogéneas e escalas variadas.
Para o treinamento, foi utilizada uma rede neural com quatro
camadas, composta por 54 neurdnios na camada de entrada, 80 e
60 neurdnios nas duas camadas ocultas e 7 neurdnios na camada de
saida, correspondentes as sete classes. A base de dados foi obtida
no repositorio publico UCI Machine Learning Repository, mantido
pela Universidade da California, Irvine, onde o conjunto ¢
disponibilizado em formato texto, contendo registros tabulares
prontos para aplicacdes em aprendizado de maquina.

Para uma avaliagdo comparativa equilibrada entre os algoritmos de
treinamento, todas as redes neurais foram treinadas por 100 épocas
em cada conjunto de dados. Essa abordagem permite observar tanto
o comportamento inicial dos algoritmos quanto sua convergéncia
em um horizonte de treinamento prolongado. Para os algoritmos
baseados em momentos adaptativos (ADAM e ADAGRAD), foram
fixados os seguintes hiperparametros, conforme recomendagdes da
literatura e praticas estabelecidas:

- € (epsilon) = 1x10®* (termo de regularizagdo para estabilidade
numérica)

- B1=0,9 (fator de decaimento para o momento de primeira ordem)

- B2 = 0,999 (fator de decaimento para o momento de segunda
ordem)

A taxa de aprendizagem (conforme ilustrado no Quadro 3) foi
sistematicamente variada em um intervalo amplo para avaliar a
sensibilidade dos algoritmos a este pardmetro. Foram testados sete
valores distintos:

Quadro 3: Taxas de Aprendizagem utilizadas.

Taxas de Aprendizagem (@)

0,1 0,05 | 0,01 | 0,005 | 0,001 | 0,0005 | 0,0001

Esta abordagem permite identificar tanto a faixa 6tima de taxas de
aprendizagem para cada algoritmo-conjunto de dados quanto sua
robustez a ajustes deste pardmetro.

4. ANALISE E DISCUSSAO
RESULTADOS

Nesta se¢do, sdo apresentados e discutidos os resultados obtidos a
partir da comparacdo entre quatro algoritmos de otimizagdo: SGD
(Stochastic Gradient), ADAGRAD, ADAM e WEGRAD. As
métricas de avaliagdo incluem acurdcia (em termos de jogadas
erradas e percentual de erro) e desempenho geral (média e desvio
padrdo).

DOS

65

Revista de Sistemas e Computacdo, Salvador, v. 15, n. 3, p. 61-69, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

4.1 Resultados para a base de dados Jogo da
Velha

No Quadro 4, apresentamos os resultados do nimero de erros para
a base Jogo da Velha a partir da comparagdo entre quatro
algoritmos de otimizagdo: SGD (Stochastic Gradient),
ADAGRAD, ADAM e WEGRAD.

Quadro 4: Numero de erros para base Jogo da Velha.

a ADAM | ADAGRAD | WEGRAD | SGD
7
g 0.1 5965.0 461.0 4991.0 555.0
=
EJ 0.05 5965.0 984.0 2.0 812.0
)
5 0.01 104.0 3442.0 449.0 3632.0
3
Z 0.005 73.0 3661.0 1209.0 5365.0
=
E 0.001 777.0 5451.0 4073.0 5505.0
8 0.0005 | 1454.0 5451.0 4754.0 5480.0
<
0.0001 3588.0 5451.0 5493.0 5470.0
Média 2560.9 3557.3 2995.9 3831.3
Desvio Padrio 2609.7 2121.0 2349.1 2252.7
Melhor 73.0 461.0 2.0 555.0

O método WEGRAD destacou-se como o mais eficiente para o
problema em questdo, alcangando o menor nimero de jogadas
erradas (apenas 2) com uma taxa de aprendizado de 0,05. Esse
resultado sugere que 0 WEGRAD ¢ particularmente adequado para
problemas de menor escala, como o Jogo da Velha, devido a sua
capacidade de realizar ajustes precisos com taxas de aprendizado
intermediarias.

O ADAM também apresentou bons resultados, especialmente em
taxas menores (0,01 e 0,005), demonstrando robustez em diferentes
configuragdes. Por outro lado, ADAGRAD e SGD tiveram
desempenho inferior, registrando um alto ntimero de erros em taxas
de aprendizado reduzidas. Esse comportamento pode indicar
instabilidade ou convergéncia lenta, limitando sua eficacia nesse
contexto.

Em resumo, enquanto o WEGRAD mostrou-se a melhor escolha
para otimiza¢do neste cenario, o ADAM surge como uma
alternativa viavel, especialmente em configuragdes mais
conservadoras. J& ADAGRAD e SGD pode demandar ajustes
adicionais para um melhor resultado.

No Quadro 5, apresentamos o nimero de acertos (acuracia) para a
base de dados Jogo da Velha, a partir da comparac@o entre quatro
algoritmos de otimizacdo: SGD (Stochastic Gradient),
ADAGRAD, ADAM e WEGRAD.

Quadro 5: Numero de acertos (acuracia) para base de dados Jogo
da Velha

a ADAM | ADAGRAD | WEGRAD | SGD
_ 0.1 9.85% 93.03% 24.57% 91.61%
o
=
E 0.05 9.85% 85.13% 99.97% 87.73%
]
:\E 0.01 98.43% 47.98% 93.21% 45.11%
= 0.005 | 98.90% 44.67% 81.73% 18.92%
Q
é 0.001 | 88.26% 17.62% 38.45% 16.81%
Q
<
0.0005 | 78.03% 17.62% 28.15% 17.18%
0.0001 | 45.78% 17.62% 16.99% 17.33%
Média 61.30% 46.24% 54.72% 42.10%
Desvio Padrao | 39.44% 32.05% 35.50% 34.04%
Melhor 98.90% 93.03% 99.97% 91.61%

O WEGRAD demonstrou superioridade no problema do Jogo da
Velha, alcangando 99,97% de acerto com uma taxa de aprendizado
de 0,05. Esse resultado sugere que o método proposto ¢ altamente
eficiente em problemas discretos e de pequena escala, onde a
adaptabilidade do WEGRAD a diferentes taxas de aprendizado se
mostrou vantajosa.

Em contraste, 0 ADAM apresentou o pior desempenho (9,9% de
acerto para taxa de 0,1), indicando alta sensibilidade a taxas de
aprendizado elevadas. No entanto, seu desempenho melhorou
significativamente em taxas mais baixas (97,3% para 0,005), o que
sugere que 0 ADAM requer um ajuste fino para ser eficaz.

Os métodos ADAGRAD e SGD tiveram desempenho
intermediario, com médias de acuracia em torno de 85%. O SGD
mostrou maior consisténcia, enquanto o ADAGRAD apresentou
maior variabilidade dependendo da taxa de aprendizado.

4.2 Resultados para a base de dados CIFAR-
10

No Quadro 6, apresentamos os resultados do niimero de erros para
a base de dados CIFAR-10, a partir da comparagdo entre quatro
algoritmos de otimizagdo: SGD (Stochastic Gradient),
ADAGRAD, ADAM e WEGRAD.

Quadro 6: Numero de erros para base de dados CIFAR-10.

2 P ADAM | ADAGRAD | WEGRAD | SGD
o

Z

2 0.1 45000 24458 45000 28520
Z

< 0.05 45024 20414 45000 26834
«

I

E & 0.01 44975 21913 29864 21890
£2

= 0.005 45179 27518 27820 22106

66

Revista de Sistemas e Computacdo, Salvador, v. 15, n. 3, p. 61-69, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

0.001 26059 40247 17260 30244
0.0005 22224 41571 18813 39411
0.0001 24921 45074 25592 44822
Média 36197.43 31599.29 29907.00 30546.71
Desvio Padrio 11092.87 10347.11 11266.45 8626.77
Melhor 22224 20414 17260 21890

O WEGRAD apresentou o melhor desempenho pois obteve o
menor nimero de erros (17.260) com taxa de 0,001, seguido por
ADAGRAD (20414 com taxa 0,05). ADAM e SGD apresentaram
desempenho consistente, mas ndo superaram os outros métodos.

O ADAM, assim como, o WEGRAD, apresentaram os piores
resultados em taxas altas, com erros proximos ao maximo (60.000
amostras).

Para conjuntos de dados mais complexos como CIFAR-10, SGD e
ADAGRAD foram mais robustos, especialmente em taxas de
aprendizado intermediarias. O WEGRAD destacou-se com a
melhor média e o melhor caso, sugerindo, ainda que
provisoriamente, que o método ¢ capaz de desempenhar bem
também em conjuntos de dados maiores, conforme ilustrado no
Quadro 7.

Quadro 7: Numero de acertos (acuracia) para base de dados

CIFAR-10
[14 ADAM | ADAGRAD | WEGRAD | SGD

. 0.1 25.00% 59.24% 25.00% 52.47%
S

5 0.05 24.96% 65.98% 25.00% 55.28%
2

N 0.01 25.04% 63.48% 50.23% 63.52%

= 0.005 | 24.70% 54.14% 53.63% 63.16%
@]

g 0.001 | 56.57% 32.92% 71.23% 49.59%
Q
<

0.0005 | 62.96% 30.72% 68.65% 34.32%

0.0001 | 58.47% 24.88% 57.35% 25.30%

Média 39.67% 47.33% 50.16% 49.09%

Desvio Padriao | 18.49% 17.25% 18.78% 14.38%

Melhor 62.96% 65.98% 71.23% 63.52%

Para o conjunto CIFAR-10, que representa um problema mais
complexo (classificagdo de imagens coloridas), o WEGRAD
obteve a maior acuracia (71,23% para taxa de 0,001), seguido pelo
ADAGRAD (65,98% para taxa de 0,05). Esse resultado indica que
o método proposto se mostrou competitivo frente aos métodos
adaptativos existentes.

O ADAM teve o pior desempenho inicial (25% para taxa de 0,1),
mas melhorou em taxas menores (62,9% para 0,0005), refor¢ando
sua dependéncia de hiperparametros cuidadosamente selecionados.

4.3 Resultados para a base de dados MNIST

No Quadro 6, apresentamos os resultados do niimero de erros para
a base de dados MNIST, a partir da comparagdo entre quatro
algoritmos de otimizagdo: SGD (Stochastic Gradient),
ADAGRAD, ADAM e WEGRAD.

Quadro 8: Numero de erros para base de dados MNIST.

a ADAM | ADAGRAD | WEGRAD | SGD
@
% 0.1 54149 249 38090 124
=
= 0.05 54077 283 1597 127
a
()
= 0.01 1314 1836 4 281
=
S
z 0.005 299 4627 10 459
=
E 0.001 195 42056 22 2630
=
> 0.0005 216 53258 87 5653
0.0001 874 53258 2739 53258
Média 15874.86 | 22223.86 6078.43 8933.14
Desvio Padrio 2612477 | 25849.43 14155.55 | 19651.13
Melhor 195.00 249.00 4.00 124.00

WEGRAD novamente se destacou, com apenas 4 erros em taxa
0.01, seguido por SGD (124 erros em taxa 0,1). ADAM teve bom
desempenho com taxas menores (195 erros com taxa de 0,001). O
método ADAGRAD teve alta variabilidade, com erros elevados em
taxas baixas (53.258 erros).

A relativa robustez do método WEGRAD na base de dados MNIST
reforga a ideia de que o método pode ser competitivo. A ilustragdo
de tais resultados esta presente no Quadro 9.

Quadro 9: Numero de acertos (acuracia) para base de dados

MNIST.
a ADAM | ADAGRAD | WEGRAD | SGD
n
g 0.1 9.74% 97.07% 37.51% 97.66%
&
=
% 0.05 10.32% 97.12% 95.57% 97.75%
X
< 0.01 96.26% 95.91% 97.97% 97.70%
5
E 0.005 | 97.27% 91.80% 97.93% 97.42%
§ 0.001 | 96.97% 30.24% 97.60% 95.10%
0.0005 | 96.89% 11.35% 97.32% 90.83%
67

Revista de Sistemas e Computacdo, Salvador, v. 15, n. 3, p. 61-69, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

0.0001 | 96.89% 11.35% 94.80% 11.35%

Média 72.05% 62.12% 88.39% 83.97%
Desvio Padriao | 42.37% 42.11% 22.47% 32.12%
Melhor 97.27% 97.12% 97.97% 97.75%

No MNIST, o WEGRAD novamente se destacou, atingindo
97,97% de acerto com taxa de 0,01, o melhor resultado entre todos
os algoritmos testados. Esse desempenho reforga a eficacia do
método em problemas balanceados e de classificagdo simples.

O SGD também apresentou excelentes resultados 97,75% para taxa
de 0,05, demonstrando robustez em diferentes taxas de
aprendizado.

O ADAGRAD, por outro lado, teve um colapso de desempenho em
taxas baixas (11,35% para < 0,0005), indicando que seu mecanismo
de adaptagdo pode ser instavel em certos regimes de treinamento.

4.4 Resultados dados
COVERTYPE

para a base de

No Quadro 10, apresentamos os resultados do nimero de erros para
a base de dados COVERTYPE, a partir da comparagdo entre os
quatro algoritmos de otimizagdo: SGD (Stochastic Gradient),
ADAGRAD, ADAM e WEGRAD.

Quadro 10: Numero de erros para base de dados COVERTYPE.

a ADAM ADAGRAD | WEGRAD | SGD
@
% 0.1 297701 90991 578253 68426
=
E] 0.05 315675 104647 563933 65313
=]
E 0.01 110858 150350 77853 61464
=
=
£ 0.005 64862 157628 80541 66218
g
E 0.001 47284 167715 114330 112019
=
% 0.0005 52442 194868 132127 127732
0.0001 93261 297706 175289 160637
Média 140297.51 166272.14 246046.57 | 94544.14
Desvio Padrio 115964.63 68176.01 224509.70 | 39175.57
Melhor 47284 90991 77853 61464

ADAM obteve o menor niimero de erros absoluto (47284 erros com
taxa de 0,001), seguido por SGD (61.464 erros com taxa de 0,01).
WEGRAD teve desempenho varidvel, com resultados ruins em
taxas altas, mas competitivos em taxas intermedidrias (77.853 com
0,01). O SGD mostrou-se mais estavel para conjuntos de dados
grandes e esparsos como COVERTYPE, enquanto ADAM E
WEGRAD podem requerer ajustes mais cuidadosos das taxas. Veja
0 Quadro 11.

Quadro 11: Numero de acertos (acuracia) para base de dados

COVERTYPE
a ADAM | ADAGRAD | WEGRAD | SGD

7 0.1 48.76% 84.34% 0.47% 88.22%
o

E 0.05 45.67% 81.99% 2.94% 88.76%
@]

<\E 0.01 80.92% 74.12% 86.60% 89.42%

= 0.005 | 88.84% 72.87% 86.14% 88.60%
Q

é 0.001 | 91.86% 71.13% 80.32% 80.72%
Q

=< 0.0005 | 90.97% 66.46% 77.26% 78.02%

0.0001 | 83.95% 48.76% 69.83% 72.35%

Média 83.95% 72.87% 77.26% 88.22%

Desvio Padriao | 19.96% 11.73% 38.64% 6.74%

Melhor 91.86% 94.34% 86.60% 89.42%

Para o conjunto COVERTYPE, que possui um desbalanceamento
significativo entre classes, 0 ADAM obteve o melhor desempenho
(91,86% para taxa = 0,001), seguido pelo SGD (89,42% para taxa
de 0,01).

O ADAM teve baixa acuracia em taxas altas (48,8% para 0,1), mas
melhorou em taxas menores (83,9% para 0,0001), confirmando sua
sensibilidade 4 mudanga de parametros.

O WEGRAD apresentou instabilidade, mas apresentou média
proxima aos demais algoritmos.

4.5 Comentario geral dos resultados

Os resultados experimentais revelaram diferengas significativas no
desempenho dos quatro algoritmos avaliados. O WEGRAD,
método proposto neste estudo, destacou-se como o mais robusto,
superando os demais em trés dos quatro conjuntos de dados
testados. Seu desempenho Otimo foi observado em taxas de
aprendizado intermediarias (0,01 a 0,001), nas quais demonstrou
notavel capacidade de equilibrar velocidade de convergéncia e
precisdo. No Jogo da Velha, por exemplo, alcangou 99,97% de
acerto com taxa de 0,05, enquanto no MNIST registrou apenas 4
erros com taxa 0,01, comprovando sua eficicia especialmente em
problemas de média e pequena escala.

O SGD apresentou desempenho confidvel em conjuntos de dados
maiores e mais complexos, como CIFAR-10 e COVERTYPE, nas
quais sua simplicidade algoritmica mostrou-se vantajosa. No
entanto, seu comportamento foi mais instavel em outros contextos,
exigindo ajuste fino da taxa de aprendizado para atingir
desempenho ideal. Na base de dados COVERTYPE, em particular,
manteve erro abaixo de 16% em todas as taxas testadas,
demonstrando boa estabilidade.

68

Revista de Sistemas e Computacdo, Salvador, v. 15, n. 3, p. 61-69, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

O ADAM, por sua vez, mostrou consisténcia em diversas
configuragdes, especialmente com taxas baixas (0,001 a 0,0001),
embora raramente tenha alcangado os melhores resultados
absolutos. Sua robustez o torna uma opg¢ao segura para aplicagdes
gerais, mas nossa andlise indica que existem alternativas mais
eficientes para problemas especificos.

O ADAGRAD apresentou os resultados mais limitados, com
desempenho satisfatorio apenas em taxas altas (0,1) e degradacéo
acentuada em valores menores. Essa limitagdo parece estar
relacionada ao seu mecanismo de adaptacdo de taxa, que
rapidamente diminui o passo de aprendizado, comprometendo sua
utilidade pratica na maioria dos cenarios.

5. CONCLUSAO E CONSIDERACOES
FINAIS

Os resultados obtidos permitem concluir que o algoritmo
WEGRAD apresentou desempenho competitivo e, em alguns
casos, superior aos métodos tradicionais, especialmente em
problemas de média e pequena escala. No Jogo da Velha e no
MNIST, o WEGRAD néo apenas superou os demais em termos de
acuracia, como também apresentou menor numero de erros (erro
absoluto), demonstrando robustez na tarefa de classificagdo ¢ uma
excelente capacidade de generalizacdo quando configurado com
taxas de aprendizado intermedidrias.

No entanto, para bases de dados grandes, como CIFAR-10 e
COVERTYPE, o desempenho do WEGRAD mostrou-se mais
sensivel a mudanga das taxas de aprendizado. Apesar disso, o
método foi capaz de alcangar resultados competitivos e, em alguns
casos, superiores aos demais métodos como no caso da base de
dados CIFAR-10, sugerindo que a estratégia de ponderagdo dos
gradientes pode ser promissora também em cenarios mais
desafiadores, desde que acompanhada de um ajuste criterioso dos
parametros.

Diante dos resultados apresentados, o algoritmo WEGRAD
constitui uma contribuigdo relevante para o campo de otimizagdo
de redes neurais, oferecendo wuma alternativa vidvel,
particularmente eficaz em problemas nos quais o balanceamento do
aprendizado sobre amostras dificeis é determinante para o sucesso
do treinamento. Ressalta-se, entretanto, que o método carece de
investigacdes adicionais, especialmente no que se refere a
otimizagdo dos pardmetros e a andlise de sua escalabilidade em
arquiteturas mais profundas e em bases massivas.

O método apresentado foi comparado com alguns algoritmos ja
bem estabelecidos na literatura. Os resultados mostram que, sob as
medidas de desempenho relacionadas com a acuracia (nimero total
de erros, percentual de acerto) o método é promissor, mas estudos
com um numero maior de épocas e mais bases de dados sdo
necessarios para afirmar com maior certeza.

Durante a implementagdo do método, diversas alternativas de
aperfeicoamento ¢ melhoramento foram cogitadas, uma vez que o
método ¢ relativamente simples e outras estratégias podem ser
combinadas com a ideia de utilizar um gradiente ponderado. O uso
de momentos e de um ajuste dindmico do fator de penalidade em
termos da acuracia da rede em cada época sdo as ideias mais
promissoras para futuros trabalhos.

Uma andlise mais detalhada da comparagdo da ordem de
complexidade, nimero de operagdes ¢ tempo de execugdo com os
outros métodos também sdo fatores importantes a serem abordados
em trabalhos futuros.

6. REFERENCIAS

[1] BLACKARD, J. A.;; DEAN, D. J.; ANDERSON, R. S.
Covertype Data Set. UCI Machine Learning Repository, 1998.
Disponivel em:
https://archive.ics.uci.edu/ml/datasets/covertype. Acesso em:
01 janeiro 2025.

[2] DEAN, Jeffrey et al. Large scale distributed deep networks.
Advances in Neural Information Processing Systems, [S. 1.],
v.25,p. 1223-1231, out. 2012.

[3] HAYKIN, Simon. Redes neurais: principios e pratica. In:
HAYKIN, Simon. Redes neurais: principios e pratica. 2. ed.
Porto Alegre: Bookman, 2001.

[4] KRIZHEVSKY, A. Learning Multiple Layers of Features
from Tiny Images. Technical Report, University of Toronto,
2009. Disponivel em:
https://www.cs.toronto.edu/~kriz/cifar.html. Acesso em: 01
janeiro 2025.

[5S] KINGMA, Diederik P.; BA, Jimmy Lei. Adam: a method for
stochastic optimization. International Conference on Learning
Representations, San Diego, v. 1, p. 1-15, 2015.

[6] LANGELAAR, Johannes. MNIST neural network training
and testing. MATLAB Central File Exchange, 2025.
Disponivel em:
https://www.mathworks.com/matlabcentral/fileexchange/730

10-mnist-neural-network-training-and-testing. Acesso em: 01
janeiro 2025.

[7] OJHA, Varun; NICOSIA, Giuseppe. Backpropagation neural
tree. Neural Networks, [S. 1.], v. 149, p. 66-83, 2022.

SILVA, SPATTI, FLAUZINO. Redes neurais artificiais para
engenharia e ciéncias aplicadas: Curso pratico. 1. ed. Sdo Paulo:
Artliber, 2010

69

Revista de Sistemas e Computacdo, Salvador, v. 15, n. 3, p. 61-69, set/dez 2025

https://revistarsc.com.br/ojs/index.php/rsc

https://archive.ics.uci.edu/ml/datasets/covertype
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.mathworks.com/matlabcentral/fileexchange/73010-mnist-neural-network-training-and-testing
https://www.mathworks.com/matlabcentral/fileexchange/73010-mnist-neural-network-training-and-testing

