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ABSTRACT 

This paper presents a new supervised training algorithm for 

artificial neural networks, developed with the aim of improving 

network performance in classification tasks, where accuracy is 

crucial. The method is compared with the optimization algorithms 

Stochastic Gradient Descent, ADAM, and ADAGRAD. 

Experiments were conducted using different datasets and network 

architectures. The metrics used for evaluation were the number of 

errors and accuracy during the training and testing phases. The 

results indicate that the proposed method shows competitive 

performance, with specific advantages in certain contexts, making 

it a promising alternative to traditional optimization algorithms. 
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RESUMO 

Este artigo apresenta um novo algoritmo de treinamento 

supervisionado para redes neurais artificiais, desenvolvido com o 

objetivo de melhorar o desempenho de redes em tarefas de 

classificação, em que a acurácia é fundamental. O método é 

comparado aos algoritmos de otimização Stochastic Gradient 

Descent, ADAM e ADAGRAD. Foram realizados experimentos 

com diferentes conjuntos de dados e arquiteturas de rede. As 

métricas utilizadas para avaliação foram o número de erros e a 

acurácia, durante as fases de treinamento e teste. Os resultados 

indicam que o método proposto apresenta desempenho 

competitivo, com vantagens específicas em determinados 

contextos, sendo uma alternativa promissora aos algoritmos 

tradicionais de otimização. 

Palavras-chave 

Redes neurais; Otimização; Treinamento; Aprendizado de 

Máquina.Neural. 

1. INTRODUÇÃO 

O avanço das redes neurais artificiais tem impulsionado 

significativamente o desenvolvimento de soluções na área de 

aprendizado de máquina, especialmente em tarefas como 

classificação, reconhecimento de padrões e processamento de 

dados complexos.  

O desempenho dessas redes está diretamente relacionado à escolha 

de algoritmos de otimização capazes de ajustar os parâmetros do 

modelo de forma eficiente, garantindo uma boa capacidade de 

generalização. 

Este trabalho aborda especificamente uma proposta de algoritmo de 

treinamento supervisionado em tarefas de classificação. Uma 

comparação é feita com os algoritmos de treinamentos baseados no 

Gradiente Estocástico com Minilotes, uma técnica amplamente 

utilizada por proporcionar equilíbrio entre estabilidade na 

convergência e custo computacional.  

Além desse método, também são analisados algoritmos adaptativos 

como ADAM e ADAGRAD. Nossa proposta de algoritmo, 

denominada WEGRAD, introduz um mecanismo de ponderação do 

gradiente com o objetivo de melhorar o desempenho com foco na 

acurácia, isto é, a classificação de forma correta do maior número 

possível de pontos da base de dados. 

A escolha desse objeto de estudo justifica-se pela ampla utilização 

das redes neurais em diferentes áreas e pela necessidade constante 

de aprimorar os métodos de treinamento, tornando-os mais 

eficientes, precisos e capazes de lidar com diferentes tipos de dados 

e problemas. Estudar e compreender o comportamento desses 

algoritmos é essencial para o desenvolvimento de modelos mais 

robustos e eficientes. 

Dessa forma, o objetivo deste trabalho é analisar, propor e 

comparar algoritmos de otimização aplicados ao treinamento de 

redes neurais, avaliando seus desempenhos com foco na acurácia, 

em diferentes bases de dados e variando um parâmetro 

fundamental, a taxa de aprendizagem.   

2. FUNDAMENTAÇÃO TEÓRICA 

Os modelos de redes utilizadas neste trabalho serão baseados em 

redes do tipo perceptron, que revisamos rapidamente, a seguir. 

2.1 Rede Perceptron 

Segundo [8], o Perceptron, idealizado por Rosenblatt em 1958, é a 

forma mais simples de uma rede neural artificial, inspirado na retina 

e utilizado para reconhecer padrões geométricos.  

A Figura 1(adaptada de [8], p.58), ilustra uma rede Perceptron 

constituída de 𝑛 sinais de entrada, representativas do problema a 
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ser mapeado, e somente uma saída, pois a mesma é constituída de 

somente um único neurônio. 

Apesar de ser uma rede considerada simples, o Perceptron 

despertou grande interesse da comunidade científica desde sua 

proposição, atraindo pesquisadores interessados no potencial da 

área de redes neurais e inteligência artificial [8]. 

 

Figura 1: Ilustração da rede Perceptron. 

Em termos matemáticos, o processamento interno realizado pelo 

Perceptron pode ser descrito pelas seguintes expressões: 

                                        𝑢 = ∑ 𝑥𝑖 ∙ 𝑤𝑖
𝑛
1 + 𝑣,                              (1) 

na qual 𝑣 é chamado de parâmetro de “viés” e 𝑤𝑖 são chamados 

“pesos sinápticos”. O sinal do neurônio é dado então através de uma 

função de ativação 𝑔(𝑢) :  

                                                𝑦 = 𝑔(𝑢).                                    (2)   

No primeiro passo do funcionamento do Perceptron, é realizado o 

cálculo do potencial de ativação do neurônio, representado por 𝑢. 

Esse valor é obtido por meio do somatório ponderado dos sinais de 

entrada, em que cada entrada 𝑥𝑖 é multiplicada pelo respectivo peso 

sináptico 𝑤𝑖, refletindo importância daquela entrada para o 

processo de decisão do neurônio.  A esse somatório é adicionado o 

termo de viés 𝑣, responsável por deslocar a função de ativação, 

permitindo à rede ajustar sua fronteira de decisão mesmo quando 

todos os valores de entrada forem nulos. Dessa forma, o Perceptron 

simples se apresenta como um modelo fundamental para o 

entendimento das redes neurais, sendo capaz de realizar 

classificações lineares com base em uma combinação ponderada 

das entradas e uma função de ativação. 

2.2  Redes Perceptron Multicamadas 

A fim de superar as limitações do Perceptron simples, foi 

desenvolvido o Perceptron Multicamadas. Segundo [8] (p.91), “As 

Redes Perceptron de múltiplas camadas (PMC) são caracterizadas 

pela presença de pelo menos uma camada intermediária 

(escondida) de neurônios, situada entre a camada de entrada e a 

respectiva camada neural de saída.”  

A Figura 2 (retirada de [8], p.92), representa uma estrutura 

pertencente à arquitetura feedforward. Nessa configuração, o 

funcionamento da rede neural ocorre de forma sequencial, em que 

as saídas de uma camada são utilizadas como entradas para a 

camada seguinte, até atingir a camada final [3].  

De acordo com [8] (p. 93), “os estímulos ou sinais são apresentados 

à rede em sua de entrada [...] os neurônios da camada de saída 

recebem os estímulos advindos dos neurônios da última camada 

intermediária, produzindo um padrão de resposta que será a saída 

disponibilizada pela rede”. 

 

Figura 2: Representação de redes Perceptron Multicamadas. 

Diferentemente do Perceptron simples, em que um único neurônio 

realiza o mapeamento concentrado do processo, as redes 

Perceptron Multicamadas (PMC) distribuem o conhecimento 

relacionado ao comportamento entrada/saída entre todos os seus 

neurônios. Nesse contexto, o problema real é modelado tanto pela 

camada de entrada, que recebe os estímulos iniciais, quanto pela 

camada de saída, que gera a resposta esperada.  

2.3 Treinamento Supervisionado 

O treinamento supervisionado é uma das estratégias mais utilizadas 

no campo do aprendizado de máquina e consiste em fornecer à rede 

neural um conjunto de dados de entrada com as respectivas saídas 

desejadas, denominados exemplos rotulados.    

Conforme descrito por [8], essa abordagem exige a 

disponibilização de uma tabela de dados representativa, contendo 

os sinais de entrada e suas correspondentes saídas desejadas. Essa 

tabela, também conhecida como tabela de atributos/valores, deve 

ser capaz de refletir o comportamento do sistema a ser modelado, 

fornecendo subsídios suficientes para que as estruturas neurais 

possam formular “hipóteses” sobre o que se deve ser aprendido. 

Nosso método aplica-se onde a tarefa da rede é classificar os dados 

em um conjunto discreto de classes. No caso em que temos 𝑚 

classes trabalhamos com 𝑚 neurônios na camada de saída. Uma 

possível interpretação para o estado dos neurônios da camada de 

saída é a probabilidade de um certo dado estar na classe 

correspondente ao neurônio. Para a tarefa de classificação costuma-

se simplesmente classificar um dado na classe com a maior 

probabilidade correspondente. 

2.4 Algoritmo Gradiente Estocástico com 

Minilote (SGD) 

É um algoritmo fundamental para o treinamento de redes neurais 

artificiais. Seu funcionamento baseia-se na aplicação da regra da 

cadeia do Cálculo Diferencial para calcular o gradiente do erro em 

relação aos pesos da rede.  

O processo inicia-se na camada de saída, onde o erro entre a saída 

produzida pela rede e a saída desejada é calculado. Em seguida, 

esse erro é propagado para trás através das camadas da rede, 

ajustando os pesos de forma a minimizar a função de custo. Esse 
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ajuste é realizado com base em um algoritmo de otimização, como 

o gradiente descendente, que utiliza as derivadas parciais do erro 

para cada peso, atualizando-os de maneira proporcional ao valor 

desses gradientes. O objetivo é reduzir gradualmente o erro da rede 

ao longo de várias iterações do algoritmo, chamadas de “épocas” 

de treinamento. 

Para otimizar o processo de treinamento e equilibrar o custo 

computacional com a estabilidade da convergência, é comum 

empregar a retropropagação com minilotes. Nessa abordagem, o 

conjunto de dados de treinamento é dividido em pequenos 

subconjuntos de amostras, denominados minilotes. As atualizações 

dos parâmetros são feitas, então, após a retropropagação ser 

realizada em cima de cada minilote. 

2.5 Algoritmo ADAGRAD 

De acordo com [2] e [7], o ADAGRAD é um algoritmo que realiza 

a adaptação individual das taxas de aprendizado para cada 

parâmetro do modelo, com base na soma acumulada dos quadrados 

dos gradientes. Esse mecanismo permite que parâmetros que 

recebem atualizações frequentes tenham suas taxas de aprendizado 

progressivamente reduzidas, enquanto parâmetros menos 

atualizados mantêm taxas relativamente maiores. No Quadro 1, 

apresentamos os passos requeridos pelo algoritmo ADAGRAD. 

 

 

Quadro 1: Algoritmo ADAGRAD 

Etapa 

1 

Descrição: Inicializar parâmetros 

Fórmula / Ação: 𝜃0←Valores iniciais 

Etapa 

2 

Descrição: Inicializar acumulador de gradientes ao 

quadrado 

Fórmula / Ação: 𝐺0← 0 

Etapa 

3 

Descrição: Para cada iteração t=1 até T: 

Fórmula / Ação: — 

Etapa 

3.1 

Descrição: Gradiente da função de custo em relação 

a 𝜃 

Fórmula / Ação: 𝑔𝑡=𝛻𝜃𝐶(𝜃𝑡−1)  

Etapa 

3.2 

Descrição: Acumulador com os quadrados dos 

gradientes 

Fórmula / Ação: 𝐺𝑡 = 𝐺𝑡−1 + 𝑔𝑡 ⊙ 𝑔𝑡 

Etapa 

3.3 

Descrição: Atualizar os parâmetros com taxa 

adaptativa 

Fórmula / Ação: 𝜃𝑡 = 𝜃𝑡−1 −
𝛼

√𝐺𝑡+𝜖
⨀𝑔𝑡 

 O vetor 𝜃 representa os parâmetros do modelo, ou seja, os pesos e 

vieses que são otimizados durante o treinamento. A taxa de 

aprendizado, denotada por 𝛼, controla o tamanho dos passos dados 

na direção oposta ao gradiente. Sendo 𝜃0 os parâmetros (Pesos e 

Vieses) iniciais da rede, 𝐺𝑡 é o acumulador das componentes dos 

gradientes ao quadrado, 𝑔𝑡 o gradiente para função de custo em 

relação a cada parâmetro 𝜃0, 𝑡 é o índice do minilote, 𝜃𝑡 o conjunto 

completo de parâmetros da rede (pesos sinápticos e vieses) depois 

da iteração no minilote 𝑡, 𝜖 uma constante pequena para evitar 

divisão por 0. Vale ressaltar que a operação ⨀ representa uma 

multiplicação componente por componente. A função de custo 𝐶 é 

definida como: 

                                        𝐶 = ∑ (𝑦𝑖 − 𝑌𝑖)2𝑚
𝑖=1                               (3) 

A função calcula o somatório dos erros quadráticos entre a saída 

prevista pela rede 𝑦𝑖 e a saída desejada (rótulo) 𝑌𝑖 para cada amostra 

𝑖, na qual 𝑖 varia de 1 até 𝑚, que é o número total de neurônios na 

camada de saída da rede. 

2.6 Algoritmo ADAM 

Proposto por [5], é um otimizador baseado em descida de gradiente 

estocástica que combina momentos de primeira e segunda ordem 

para calcular taxas de aprendizagem adaptativas por parâmetro. 

Com baixa demanda de memória e fácil implementação, é 

amplamente utilizado em problemas com grandes volumes de 

dados e parâmetros. No Quadro 1, apresentamos os passos 

requeridos pelo algoritmo ADAM. 

Quadro 2: Algoritmo ADAM. 

Etapa 

1 

Descrição: Inicializar parâmetros 

Fórmula / Ação: 𝜃0←Valores iniciais 

Etapa 

2 

Descrição: Inicializar momento 

Fórmula / Ação: 𝑚0← 0 

Etapa 

3 

Descrição: Inicializar variância 

Fórmula / Ação: 𝑣0 ← 0 

Etapa 

4 

Descrição: Inicializar contador de tempo 

Fórmula / Ação: 𝑡 ← 0 

Etapa 

5 

Descrição: Para cada iteração t = 1 até T: 

Fórmula / Ação: —      

Etapa 

5.1 

Descrição: Gradiente da função de custo em 

relação a 𝜃 

Fórmula / Ação: 𝑔𝑡=𝛻𝜃𝐶(𝜃𝑡−1) 

Etapa 

5.2 

Descrição: Atualizar momento (1ª média 

móvel) 

Fórmula / Ação: 𝑚𝑡 = 𝛽1 ∗ 𝑚𝑡−1 + (1 −
𝛽1) ∗ 𝑔𝑡 
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Etapa 

5.3 

Descrição: Atualizar variância (2ª média 

móvel) 

Fórmula / Ação: 𝑣𝑡 = 𝛽2 ∗ 𝑣𝑡−1 + (1 −
𝛽2) ∗ 𝑔𝑡

2 

Etapa 

5.4 

Descrição: Corrigir o viés do momento 

Fórmula / Ação: 𝑚′𝑡 =
𝑚𝑡

(1−𝛽1)𝑡
 

Etapa 

5.5 

Descrição: Corrigir o viés da variância 

Fórmula / Ação: 𝑣′𝑡 =
𝑣𝑡

(1−𝛽1)𝑡 

Etapa 

5.6 

Descrição: Atualizar os parâmetros 

Fórmula / Ação: 𝜃𝑡 = 𝜃𝑡−1 −
𝛼

√𝑣′𝑡+𝜀
∙ 𝑚′𝑡 

Os coeficientes 𝛽1 e 𝛽2 são fatores de decaimento exponencial 

utilizados para calcular médias móveis dos gradientes e de seus 

quadrados, respectivamente. Para garantir estabilidade numérica e 

evitar divisões por zero, o algoritmo utiliza um pequeno valor 𝜀, 

geralmente igual a 10−8.  

A cada iteração 𝑡, é calculado o gradiente 𝑔𝑡, correspondente à 

derivada da função de custo em relação aos parâmetros. Em 

seguida, são atualizados dois vetores auxiliares: o vetor de 

momento 𝑚𝑡 , que armazena a média móvel dos gradientes, e o 

vetor de variância 𝑣𝑡, que armazena a média móvel dos quadrados 

dos gradientes. Como tanto 𝑚𝑡 quanto 𝑣𝑡 são inicialmente nulos, é 

realizada uma correção de viés para evitar distorções nos primeiros 

passos. Isso gera os vetores corrigidos 𝑚′𝑡 e 𝑣′𝑡 , que são então 

utilizados na atualização dos parâmetros. A função de custo 𝐶 é a 

mesma equação 3 acima.  

2.7 Algoritmo Weighted Gradient / WEGRAD 

(Método Proposto) 

Neste trabalho, propomos um novo método de treinamento de redes 

neurais, baseado no uso de minilotes e no ajuste adaptativo dos 

gradientes associados a amostras incorretamente classificadas. O 

objetivo é tanto acelerar a convergência, como fugir de mínimos 

locais, reforçando o aprendizado sobre exemplos nos quais a rede 

apresenta maior dificuldade.  

O procedimento de treinamento ocorre da seguinte forma: 

inicialmente, os parâmetros da rede (pesos e vieses) são sorteados 

aleatoriamente em um intervalo pequeno centrado em zero. Em 

cada época, as amostras de treinamento são embaralhadas e 

divididas em minilotes de tamanho fixo. Dessa forma, para cada 

minilote: 

- Cada amostra é processada pela rede (passagem direta) e seus 

gradientes são calculados via retropropagação. 

- O gradiente estocástico é calculado somando-se a influência de 

cada ponto de amostra do minilote, mas o peso de cada elemento 

do minilote no gradiente depende se a rede conseguiu classificar a 

amostra com sucesso ou não. Se a predição da rede para a amostra 

for incorreta, os gradientes correspondentes são multiplicados por 

um fator de penalização 𝑝 com 𝑝 ≥ 1. Se a predição for correta, os 

gradientes são acumulados normalmente. Isso cria um gradiente 

ponderado, que designaremos por 𝑢𝑡 para diferenciá-lo do 

gradiente estocástico normal 𝑔𝑡. 

- Ao final do minilote, os parâmetros da rede são atualizados 

utilizando o gradiente ponderado calculado no minilote. 

- Tanto a taxa de aprendizagem quanto o peso de penalização são 

atualizados de acordo com o número total de épocas que se deseja 

treinar a rede. O índice da época será designado por 𝜏. De forma 

que representamos 𝛼(𝜏) e 𝑝(𝜏) como a taxa de aprendizagem e o 

fator de penalização na 𝜏 − é𝑠𝑖𝑚𝑎 época respectivamente. 

 A atualização dos parâmetros 𝜃 ao final de cada minilote é feita da 

seguinte forma: 

                                      𝜃𝑡 = 𝜃𝑡−1 − 𝛼(𝜏) ∙ 𝑢𝑡                           (4) 

onde 𝛼(𝜏) é a taxa de aprendizado e 𝑢𝑡 o gradiente ponderado 

calculado para o minilote 𝑡.  

A título de ilustração, se 𝑢𝑡 representa a variável de acumulação do 

gradiente ponderado para o minilote 𝑡 e 𝛥𝑢 a contribuição de um 

elemento do minilote para o gradiente. Neste caso, a atualização é 

feita da seguinte forma: 

- se o dado está sendo classificado de forma incorreta: 

                                            𝑢𝑡 ← 𝑢𝑡 + 𝑝(𝜏) ∙ 𝛥𝑢                        (5) 

- se o dado está sendo classificado da forma correta: 

                                                 𝑢𝑡 ← 𝑢𝑡 + 𝛥𝑢                               (6) 

Outra forma de escrever o cálculo do gradiente ponderado é: 

                                     𝑢𝑡 = ∑ 𝑤(𝑖) ∙ 𝛥𝑢𝑖
𝑛
𝑖=1                                (7) 

na qual 𝑛 é o total de elementos em um minilote, 𝑡 é o índice do 

minilote, e 𝑤(𝑖) = 1 se o elemento 𝑖 está sendo classificado de 

modo correto e 𝑤(𝑖) = 𝑝(𝜏) se está classificado de forma errada. 

Além disso, o método adota duas estratégias dinâmicas de ajuste da 

taxa de aprendizado e o fator de penalização ao longo do 

treinamento. A taxa de aprendizado, decresce linearmente 

conforme a época:   

                                   𝛼(𝜏) = 𝛼0 −
𝛼0∗(𝜏−1)

𝑁
,                                         (8) 

onde 𝛼0 é a taxa de aprendizado inicial e 𝑁 é o número total de 

épocas em que se quer realizar o treinamento. 

O fator de penalização cresce linearmente ao longo das épocas:  

                                   𝑝(𝜏) = 𝑝0 + 𝑘 ∗
𝑝0∗(𝜏−1)

𝑁
,                               (9) 

onde 𝑝0 é o fator de penalização inicial e 𝑘 é um parâmetro que 

mede o peso da penalização limitando o máximo peso da 

penalização. Em todas nossas simulações, utilizamos 𝑘 = 100, 

sendo que o parâmetro não foi otimizado nem sua variação 

estudada ainda.  

3. METODOLOGIA 

Neste estudo, foram utilizados quatro conjuntos de dados com 

diferentes características e níveis de complexidade, com o objetivo 

de comparar o desempenho dos algoritmos de treinamento SGD, 

ADAM, ADAGRAD e o método proposto, WEGRAD.  
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Os dados selecionados representam distintos domínios e desafios, 

desde problemas simples de decisão até tarefas complexas de 

classificação com alta dimensionalidade e dados visuais. 

3.1 Base de dados Jogo da Velha 

O primeiro conjunto corresponde ao jogo da velha, um problema 

clássico e de baixa complexidade, amplamente utilizado em 

estudos de inteligência artificial. A base de dados, construída 

especificamente para este trabalho, contém vetores representando 

diferentes estados do tabuleiro e suas respectivas jogadas ideais, 

determinadas pelo algoritmo Minimax.  

Esta base, então, é composta por um total de 6617 posições 

possíveis (através de jogadas legais) para o tabuleiro do jogo e, para 

cada posição, o vetor de saída esperado (𝑌𝑖) representa em qual 

quadrado os jogadores devem jogar. No caso, os quadrados são 

rotulados de 1 a 9, de forma que a camada de saída tem 9 neurônios. 

Para o treinamento, foi utilizada uma rede neural com quatro 

camadas, composta por 18 neurônios na camada de entrada 

(representando o estado do tabuleiro), 130 e 100 neurônios nas duas 

camadas ocultas, respectivamente, e 9 neurônios na camada de 

saída (representando a jogada a ser efetuada). 

3.2 Base de dados MNIST 

O segundo conjunto é o MNIST (Modified National Institute of 

Standards and Tchnology), que consiste em 70.000 imagens de 

dígitos manuscritos (60.000 para treinamento e 10.000 para teste), 

cada uma com 28x28 pixels em tons de cinza. Esta base de dados 

funciona da seguinte maneira: cada imagem representa um número 

de 0 a 9. As imagens possuem dimensão de 28x28 pixels em escala 

de cinza, totalizando 784 características (pixels) por amostra, e cada 

pixel possui um valor de intensidade que varia de 0 (preto) a 1 

(branco).  

Durante o treinamento, cada imagem é associada a um rótulo que 

indica o dígito correspondente, permitindo que os algoritmos 

aprendam a mapear os padrões visuais para suas respectivas 

classes. A base foi obtida a partir de um código disponibilizado no 

MATLAB Central File Exchange, desenvolvido por [6]. Para o 

treinamento, foi utilizada uma rede neural com quatro camadas, 

composta por 784 neurônios na camada de entrada, 80 e 60 

neurônios nas duas camadas ocultas, respectivamente, e 10 

neurônios na camada de saída (representando cada digito de 0 a 9). 

3.3 Base de dados CIFAR-10 

O terceiro conjunto é o CIFAR-10, composto por 60.000 imagens 

coloridas (32x32 pixels, RGB) distribuídas entre 10 classes: avião, 

automóvel, pássaro, gato, cervo, cachorro, sapo, cavalo, navio e 

caminhão. As imagens apresentam variações em cor, posição, 

fundo e iluminação, o que torna o problema de classificação mais 

desafiador.    

Essa base exige que os algoritmos capturem características 

discriminantes em um contexto visual complexo, com classes 

semelhantes entre si. Para o treinamento, foi utilizada uma rede 

neural com quatro camadas, composta por 3072 neurônios na 

camada de entrada, 80 e 60 neurônios nas duas camadas ocultas, 

respectivamente, e 10 neurônios na camada de saída. A base de 

dados foi obtida no site oficial do Canadian Institute for Advanced 

Research (CIFAR-10), mantido pela Universidade de Toronto, 

onde o conjunto é disponibilizado em diferentes formatos. 

3.4 Base de dados Covertype 

O quarto conjunto utilizado é o Covertype, composto por mais de 

580.000 amostras tabulares, cada uma com 54 atributos, sendo 10 

contínuos relacionados a características geográficas (como 

elevação, inclinação, distâncias a rios, estradas e áreas de incêndio) 

e 44 binários que indicam tipos de área selvagem e tipos de solo. O 

objetivo é prever o tipo de cobertura florestal entre sete classes: 

Spruce/Fir, Lodgepole Pine, Ponderosa Pine, Cottonwood/Willow, 

Aspen, Douglas-fir e Krummholz.    

Trata-se de um problema que envolve dados de alta 

dimensionalidade, com variáveis heterogêneas e escalas variadas. 

Para o treinamento, foi utilizada uma rede neural com quatro 

camadas, composta por 54 neurônios na camada de entrada, 80 e 

60 neurônios nas duas camadas ocultas e 7 neurônios na camada de 

saída, correspondentes às sete classes. A base de dados foi obtida 

no repositório público UCI Machine Learning Repository, mantido 

pela Universidade da Califórnia, Irvine, onde o conjunto é 

disponibilizado em formato texto, contendo registros tabulares 

prontos para aplicações em aprendizado de máquina. 

Para uma avaliação comparativa equilibrada entre os algoritmos de 

treinamento, todas as redes neurais foram treinadas por 100 épocas 

em cada conjunto de dados. Essa abordagem permite observar tanto 

o comportamento inicial dos algoritmos quanto sua convergência 

em um horizonte de treinamento prolongado. Para os algoritmos 

baseados em momentos adaptativos (ADAM e ADAGRAD), foram 

fixados os seguintes hiperparâmetros, conforme recomendações da 

literatura e práticas estabelecidas: 

- 𝜀 (epsilon) = 1×10⁻⁸ (termo de regularização para estabilidade 

numérica) 

- 𝛽₁ = 0,9 (fator de decaimento para o momento de primeira ordem) 

- 𝛽₂ = 0,999 (fator de decaimento para o momento de segunda 

ordem) 

A taxa de aprendizagem (conforme ilustrado no Quadro 3) foi 

sistematicamente variada em um intervalo amplo para avaliar a 

sensibilidade dos algoritmos a este parâmetro. Foram testados sete 

valores distintos: 

Quadro 3: Taxas de Aprendizagem utilizadas. 

Taxas de Aprendizagem (𝛼) 

0,1 0,05 0,01 0,005 0,001 0,0005 0,0001 

Esta abordagem permite identificar tanto a faixa ótima de taxas de 

aprendizagem para cada algoritmo-conjunto de dados quanto sua 

robustez a ajustes deste parâmetro. 

4. ANÁLISE E DISCUSSÃO DOS 

RESULTADOS 

Nesta seção, são apresentados e discutidos os resultados obtidos a 

partir da comparação entre quatro algoritmos de otimização: SGD 

(Stochastic Gradient), ADAGRAD, ADAM e WEGRAD. As 

métricas de avaliação incluem acurácia (em termos de jogadas 

erradas e percentual de erro) e desempenho geral (média e desvio 

padrão). 
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4.1 Resultados para a base de dados Jogo da 

Velha 
 

No Quadro 4, apresentamos os resultados do número de erros para 

a base Jogo da Velha a partir da comparação entre quatro 

algoritmos de otimização: SGD (Stochastic Gradient), 

ADAGRAD, ADAM e WEGRAD. 

Quadro 4: Número de erros para base Jogo da Velha. 

A
C

U
R

Á
C

IA
  

(N
Ú

M
E

R
O

 D
E

 E
R

R
O

S
) 

𝜶 ADAM ADAGRAD WEGRAD SGD 

0.1 5965.0 461.0 4991.0 555.0 

0.05 5965.0 984.0 2.0 812.0 

0.01 104.0 3442.0 449.0 3632.0 

0.005 73.0 3661.0 1209.0 5365.0 

0.001 777.0 5451.0 4073.0 5505.0 

0.0005 1454.0 5451.0 4754.0 5480.0 

0.0001 3588.0 5451.0 5493.0 5470.0 

Média 2560.9 3557.3 2995.9 3831.3 

Desvio Padrão 2609.7 2121.0 2349.1 2252.7 

Melhor 73.0 461.0 2.0 555.0 

O método WEGRAD destacou-se como o mais eficiente para o 

problema em questão, alcançando o menor número de jogadas 

erradas (apenas 2) com uma taxa de aprendizado de 0,05. Esse 

resultado sugere que o WEGRAD é particularmente adequado para 

problemas de menor escala, como o Jogo da Velha, devido à sua 

capacidade de realizar ajustes precisos com taxas de aprendizado 

intermediárias. 

O ADAM também apresentou bons resultados, especialmente em 

taxas menores (0,01 e 0,005), demonstrando robustez em diferentes 

configurações. Por outro lado, ADAGRAD e SGD tiveram 

desempenho inferior, registrando um alto número de erros em taxas 

de aprendizado reduzidas. Esse comportamento pode indicar 

instabilidade ou convergência lenta, limitando sua eficácia nesse 

contexto. 

Em resumo, enquanto o WEGRAD mostrou-se a melhor escolha 

para otimização neste cenário, o ADAM surge como uma 

alternativa viável, especialmente em configurações mais 

conservadoras. Já ADAGRAD e SGD pode demandar ajustes 

adicionais para um melhor resultado. 

No Quadro 5, apresentamos o número de acertos (acurácia) para a 

base de dados Jogo da Velha, a partir da comparação entre quatro 

algoritmos de otimização: SGD (Stochastic Gradient), 

ADAGRAD, ADAM e WEGRAD. 

Quadro 5: Número de acertos (acurácia) para base de dados Jogo 

da Velha 

A
C

U
R

Á
C

IA
  

 (
%

 A
C

E
R

T
O

) 

𝜶 ADAM ADAGRAD WEGRAD SGD 

0.1 9.85% 93.03% 24.57% 91.61% 

0.05 9.85% 85.13% 99.97% 87.73% 

0.01 98.43% 47.98% 93.21% 45.11% 

0.005 98.90% 44.67% 81.73% 18.92% 

0.001 88.26% 17.62% 38.45% 16.81% 

0.0005 78.03% 17.62% 28.15% 17.18% 

0.0001 45.78% 17.62% 16.99% 17.33% 

Média 61.30% 46.24% 54.72% 42.10% 

Desvio Padrão 39.44% 32.05% 35.50% 34.04% 

Melhor 98.90% 93.03% 99.97% 91.61% 

O WEGRAD demonstrou superioridade no problema do Jogo da 

Velha, alcançando 99,97% de acerto com uma taxa de aprendizado 

de 0,05. Esse resultado sugere que o método proposto é altamente 

eficiente em problemas discretos e de pequena escala, onde a 

adaptabilidade do WEGRAD a diferentes taxas de aprendizado se 

mostrou vantajosa. 

Em contraste, o ADAM apresentou o pior desempenho (9,9% de 

acerto para taxa de 0,1), indicando alta sensibilidade a taxas de 

aprendizado elevadas. No entanto, seu desempenho melhorou 

significativamente em taxas mais baixas (97,3% para 0,005), o que 

sugere que o ADAM requer um ajuste fino para ser eficaz. 

Os métodos ADAGRAD e SGD tiveram desempenho 

intermediário, com médias de acurácia em torno de 85%. O SGD 

mostrou maior consistência, enquanto o ADAGRAD apresentou 

maior variabilidade dependendo da taxa de aprendizado. 

4.2 Resultados para a base de dados CIFAR-

10 
 

No Quadro 6, apresentamos os resultados do número de erros para 

a base de dados CIFAR-10, a partir da comparação entre quatro 

algoritmos de otimização: SGD (Stochastic Gradient), 

ADAGRAD, ADAM e WEGRAD. 

Quadro 6: Número de erros para base de dados CIFAR-10. 

A
C
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R

Á
C
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(N
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M
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R
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O

S
) 

𝜶 ADAM ADAGRAD WEGRAD SGD 

0.1 45000 24458 45000 28520 

0.05 45024 20414 45000 26834 

0.01 44975 21913 29864 21890 

0.005 45179 27518 27820 22106 
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0.001 26059 40247 17260 30244 

0.0005 22224 41571 18813 39411 

0.0001 24921 45074 25592 44822 

Média 36197.43 31599.29 29907.00 30546.71 

Desvio Padrão 11092.87 10347.11 11266.45 8626.77 

Melhor 22224 20414 17260 21890 

O WEGRAD apresentou o melhor desempenho pois obteve o 

menor número de erros (17.260) com taxa de 0,001, seguido por 

ADAGRAD (20414 com taxa 0,05). ADAM e SGD apresentaram 

desempenho consistente, mas não superaram os outros métodos. 

O ADAM, assim como, o WEGRAD, apresentaram os piores 

resultados em taxas altas, com erros próximos ao máximo (60.000 

amostras). 

Para conjuntos de dados mais complexos como CIFAR-10, SGD e 

ADAGRAD foram mais robustos, especialmente em taxas de 

aprendizado intermediárias. O WEGRAD destacou-se com a 

melhor média e o melhor caso, sugerindo, ainda que 

provisoriamente, que o método é capaz de desempenhar bem 

também em conjuntos de dados maiores, conforme ilustrado no 

Quadro 7. 

Quadro 7: Número de acertos (acurácia) para base de dados 

CIFAR-10 

A
C

U
R

Á
C

IA
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C

E
R

T
O

) 

𝜶 ADAM ADAGRAD WEGRAD SGD 

0.1 25.00% 59.24% 25.00% 52.47% 

0.05 24.96% 65.98% 25.00% 55.28% 

0.01 25.04% 63.48% 50.23% 63.52% 

0.005 24.70% 54.14% 53.63% 63.16% 

0.001 56.57% 32.92% 71.23% 49.59% 

0.0005 62.96% 30.72% 68.65% 34.32% 

0.0001 58.47% 24.88% 57.35% 25.30% 

Média 39.67% 47.33% 50.16% 49.09% 

Desvio Padrão 18.49% 17.25% 18.78% 14.38% 

Melhor 62.96% 65.98% 71.23% 63.52% 

Para o conjunto CIFAR-10, que representa um problema mais 

complexo (classificação de imagens coloridas), o WEGRAD 

obteve a maior acurácia (71,23% para taxa de 0,001), seguido pelo 

ADAGRAD (65,98% para taxa de 0,05). Esse resultado indica que 

o método proposto se mostrou competitivo frente aos métodos 

adaptativos existentes. 

O ADAM teve o pior desempenho inicial (25% para taxa de 0,1), 

mas melhorou em taxas menores (62,9% para 0,0005), reforçando 

sua dependência de hiperparâmetros cuidadosamente selecionados. 

4.3 Resultados para a base de dados MNIST 
 

No Quadro 6, apresentamos os resultados do número de erros para 

a base de dados MNIST, a partir da comparação entre quatro 

algoritmos de otimização: SGD (Stochastic Gradient), 

ADAGRAD, ADAM e WEGRAD. 

Quadro 8: Número de erros para base de dados MNIST. 

A
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𝜶 ADAM ADAGRAD WEGRAD SGD 

0.1 54149 249 38090 124 

0.05 54077 283 1597 127 

0.01 1314 1836 4 281 

0.005 299 4627 10 459 

0.001 195 42056 22 2630 

0.0005 216 53258 87 5653 

0.0001 874 53258 2739 53258 

Média 15874.86 22223.86 6078.43 8933.14 

Desvio Padrão 26124.77 25849.43 14155.55 19651.13 

Melhor 195.00 249.00 4.00 124.00 

WEGRAD novamente se destacou, com apenas 4 erros em taxa 

0.01, seguido por SGD (124 erros em taxa 0,1). ADAM teve bom 

desempenho com taxas menores (195 erros com taxa de 0,001). O 

método ADAGRAD teve alta variabilidade, com erros elevados em 

taxas baixas (53.258 erros).  

A relativa robustez do método WEGRAD na base de dados MNIST 

reforça a ideia de que o método pode ser competitivo. A ilustração 

de tais resultados está presente no Quadro 9. 

Quadro 9: Número de acertos (acurácia) para base de dados 

MNIST. 

A
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𝜶 ADAM ADAGRAD WEGRAD SGD 

0.1 9.74% 97.07% 37.51% 97.66% 

0.05 10.32% 97.12% 95.57% 97.75% 

0.01 96.26% 95.91% 97.97% 97.70% 

0.005 97.27% 91.80% 97.93% 97.42% 

0.001 96.97% 30.24% 97.60% 95.10% 

0.0005 96.89% 11.35% 97.32% 90.83% 
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0.0001 96.89% 11.35% 94.80% 11.35% 

Média 72.05% 62.12% 88.39% 83.97% 

Desvio Padrão 42.37% 42.11% 22.47% 32.12% 

Melhor 97.27% 97.12% 97.97% 97.75% 

No MNIST, o WEGRAD novamente se destacou, atingindo 

97,97% de acerto com taxa de 0,01, o melhor resultado entre todos 

os algoritmos testados. Esse desempenho reforça a eficácia do 

método em problemas balanceados e de classificação simples. 

O SGD também apresentou excelentes resultados 97,75% para taxa 

de 0,05, demonstrando robustez em diferentes taxas de 

aprendizado. 

O ADAGRAD, por outro lado, teve um colapso de desempenho em 

taxas baixas (11,35% para ≤ 0,0005), indicando que seu mecanismo 

de adaptação pode ser instável em certos regimes de treinamento. 

4.4 Resultados para a base de dados 

COVERTYPE 
 

No Quadro 10, apresentamos os resultados do número de erros para 

a base de dados COVERTYPE, a partir da comparação entre os 

quatro algoritmos de otimização: SGD (Stochastic Gradient), 

ADAGRAD, ADAM e WEGRAD. 

Quadro 10: Número de erros para base de dados COVERTYPE. 

A
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S
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𝜶 ADAM ADAGRAD WEGRAD SGD 

0.1 297701 90991 578253 68426 

0.05 315675 104647 563933 65313 

0.01 110858 150350 77853 61464 

0.005 64862 157628 80541 66218 

0.001 47284 167715 114330 112019 

0.0005 52442 194868 132127 127732 

0.0001 93261 297706 175289 160637 

Média 140297.51 166272.14 246046.57 94544.14 

Desvio Padrão 115964.63 68176.01 224509.70 39175.57 

Melhor 47284 90991 77853 61464 

ADAM obteve o menor número de erros absoluto (47284 erros com 

taxa de 0,001), seguido por SGD (61.464 erros com taxa de 0,01). 

WEGRAD teve desempenho variável, com resultados ruins em 

taxas altas, mas competitivos em taxas intermediárias (77.853 com 

0,01). O SGD mostrou-se mais estável para conjuntos de dados 

grandes e esparsos como COVERTYPE, enquanto ADAM E 

WEGRAD podem requerer ajustes mais cuidadosos das taxas. Veja 

o Quadro 11. 

Quadro 11: Número de acertos (acurácia) para base de dados 

COVERTYPE 

A
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Á
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E
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𝜶 ADAM ADAGRAD WEGRAD SGD 

0.1 48.76% 84.34% 0.47% 88.22% 

0.05 45.67% 81.99% 2.94% 88.76% 

0.01 80.92% 74.12% 86.60% 89.42% 

0.005 88.84% 72.87% 86.14% 88.60% 

0.001 91.86% 71.13% 80.32% 80.72% 

0.0005 90.97% 66.46% 77.26% 78.02% 

0.0001 83.95% 48.76% 69.83% 72.35% 

Média 83.95% 72.87% 77.26% 88.22% 

Desvio Padrão 19.96% 11.73% 38.64% 6.74% 

Melhor 91.86% 94.34% 86.60% 89.42% 

Para o conjunto COVERTYPE, que possui um desbalanceamento 

significativo entre classes, o ADAM obteve o melhor desempenho 

(91,86% para taxa = 0,001), seguido pelo SGD (89,42% para taxa 

de 0,01). 

O ADAM teve baixa acurácia em taxas altas (48,8% para 0,1), mas 

melhorou em taxas menores (83,9% para 0,0001), confirmando sua 

sensibilidade à mudança de parâmetros. 

O WEGRAD apresentou instabilidade, mas apresentou média 

próxima aos demais algoritmos. 

4.5 Comentário geral dos resultados 

Os resultados experimentais revelaram diferenças significativas no 

desempenho dos quatro algoritmos avaliados. O WEGRAD, 

método proposto neste estudo, destacou-se como o mais robusto, 

superando os demais em três dos quatro conjuntos de dados 

testados. Seu desempenho ótimo foi observado em taxas de 

aprendizado intermediárias (0,01 a 0,001), nas quais demonstrou 

notável capacidade de equilibrar velocidade de convergência e 

precisão. No Jogo da Velha, por exemplo, alcançou 99,97% de 

acerto com taxa de 0,05, enquanto no MNIST registrou apenas 4 

erros com taxa 0,01, comprovando sua eficácia especialmente em 

problemas de média e pequena escala. 

O SGD apresentou desempenho confiável em conjuntos de dados 

maiores e mais complexos, como CIFAR-10 e COVERTYPE, nas 

quais sua simplicidade algorítmica mostrou-se vantajosa. No 

entanto, seu comportamento foi mais instável em outros contextos, 

exigindo ajuste fino da taxa de aprendizado para atingir 

desempenho ideal. Na base de dados COVERTYPE, em particular, 

manteve erro abaixo de 16% em todas as taxas testadas, 

demonstrando boa estabilidade. 
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O ADAM, por sua vez, mostrou consistência em diversas 

configurações, especialmente com taxas baixas (0,001 a 0,0001), 

embora raramente tenha alcançado os melhores resultados 

absolutos. Sua robustez o torna uma opção segura para aplicações 

gerais, mas nossa análise indica que existem alternativas mais 

eficientes para problemas específicos. 

 O ADAGRAD apresentou os resultados mais limitados, com 

desempenho satisfatório apenas em taxas altas (0,1) e degradação 

acentuada em valores menores. Essa limitação parece estar 

relacionada ao seu mecanismo de adaptação de taxa, que 

rapidamente diminui o passo de aprendizado, comprometendo sua 

utilidade prática na maioria dos cenários. 

5. CONCLUSÃO E CONSIDERAÇÕES 

FINAIS 

Os resultados obtidos permitem concluir que o algoritmo 

WEGRAD apresentou desempenho competitivo e, em alguns 

casos, superior aos métodos tradicionais, especialmente em 

problemas de média e pequena escala. No Jogo da Velha e no 

MNIST, o WEGRAD não apenas superou os demais em termos de 

acurácia, como também apresentou menor número de erros (erro 

absoluto), demonstrando robustez na tarefa de classificação e uma 

excelente capacidade de generalização quando configurado com 

taxas de aprendizado intermediárias.  

No entanto, para bases de dados grandes, como CIFAR-10 e 

COVERTYPE, o desempenho do WEGRAD mostrou-se mais 

sensível à mudança das taxas de aprendizado. Apesar disso, o 

método foi capaz de alcançar resultados competitivos e, em alguns 

casos, superiores aos demais métodos como no caso da base de 

dados CIFAR-10, sugerindo que a estratégia de ponderação dos 

gradientes pode ser promissora também em cenários mais 

desafiadores, desde que acompanhada de um ajuste criterioso dos 

parâmetros. 

Diante dos resultados apresentados, o algoritmo WEGRAD 

constitui uma contribuição relevante para o campo de otimização 

de redes neurais, oferecendo uma alternativa viável, 

particularmente eficaz em problemas nos quais o balanceamento do 

aprendizado sobre amostras difíceis é determinante para o sucesso 

do treinamento. Ressalta-se, entretanto, que o método carece de 

investigações adicionais, especialmente no que se refere à 

otimização dos parâmetros e à análise de sua escalabilidade em 

arquiteturas mais profundas e em bases massivas. 

O método apresentado foi comparado com alguns algoritmos já 

bem estabelecidos na literatura. Os resultados mostram que, sob as 

medidas de desempenho relacionadas com a acurácia (número total 

de erros, percentual de acerto) o método é promissor, mas estudos 

com um número maior de épocas e mais bases de dados são 

necessários para afirmar com maior certeza.  

Durante a implementação do método, diversas alternativas de 

aperfeiçoamento e melhoramento foram cogitadas, uma vez que o 

método é relativamente simples e outras estratégias podem ser 

combinadas com a ideia de utilizar um gradiente ponderado. O uso 

de momentos e de um ajuste dinâmico do fator de penalidade em 

termos da acurácia da rede em cada época são as ideias mais 

promissoras para futuros trabalhos. 

Uma análise mais detalhada da comparação da ordem de 

complexidade, número de operações e tempo de execução com os 

outros métodos também são fatores importantes a serem abordados 

em trabalhos futuros. 

6. REFERÊNCIAS 

[1] BLACKARD, J. A.; DEAN, D. J.; ANDERSON, R. S. 

Covertype Data Set. UCI Machine Learning Repository, 1998. 

Disponível em: 

https://archive.ics.uci.edu/ml/datasets/covertype. Acesso em: 

01 janeiro 2025. 

[2] DEAN, Jeffrey et al. Large scale distributed deep networks. 

Advances in Neural Information Processing Systems, [S. l.], 

v. 25, p. 1223-1231, out. 2012. 

[3] HAYKIN, Simon. Redes neurais: princípios e prática. In: 

HAYKIN, Simon. Redes neurais: princípios e prática. 2. ed. 

Porto Alegre: Bookman, 2001. 

[4] KRIZHEVSKY, A. Learning Multiple Layers of Features 

from Tiny Images. Technical Report, University of Toronto, 

2009. Disponível em: 

https://www.cs.toronto.edu/~kriz/cifar.html. Acesso em: 01 

janeiro 2025. 

[5] KINGMA, Diederik P.; BA, Jimmy Lei. Adam: a method for 

stochastic optimization. International Conference on Learning 

Representations, San Diego, v. 1, p. 1-15, 2015. 

[6] LANGELAAR, Johannes. MNIST neural network training 

and testing. MATLAB Central File Exchange, 2025. 

Disponível em: 

https://www.mathworks.com/matlabcentral/fileexchange/730

10-mnist-neural-network-training-and-testing. Acesso em: 01 

janeiro 2025. 

[7] OJHA, Varun; NICOSIA, Giuseppe. Backpropagation neural 

tree. Neural Networks, [S. l.], v. 149, p. 66–83, 2022. 

SILVA, SPATTI, FLAUZINO. Redes neurais artificiais para 

engenharia e ciências aplicadas: Curso prático. 1. ed. São Paulo: 

Artliber, 2010 

 

 

 

 

 

 

  

https://archive.ics.uci.edu/ml/datasets/covertype
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.mathworks.com/matlabcentral/fileexchange/73010-mnist-neural-network-training-and-testing
https://www.mathworks.com/matlabcentral/fileexchange/73010-mnist-neural-network-training-and-testing

