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RESUMO 

O agrupamento de dados é uma técnica fundamental de 

aprendizado não supervisionado, cuja finalidade é particionar 

instâncias com base em seu grau de similaridade. O algoritmo K-

means destaca-se por sua simplicidade e eficiência computacional; 

contudo, sua sensibilidade à escolha inicial dos centróides 

frequentemente compromete a qualidade da solução, levando à 

convergência prematura em ótimos locais. Neste contexto, este 

trabalho propõe uma abordagem híbrida que combina o K-means 

com o algoritmo bio-inspirado de Otimização por Enxame de 

Partículas (PSO), com o objetivo de aprimorar a seleção dos 

centróides iniciais e acelerar o processo de convergência. A 

principal contribuição reside na melhoria da robustez e eficiência 

do K-means, mantendo sua simplicidade. Experimentos 

conduzidos com três conjuntos de dados amplamente utilizados 

demonstram que o algoritmo híbrido proposto alcança soluções de 

alta qualidade com um número reduzido de iterações, evidenciando 

sua eficácia frente ao K-means tradicional. 
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Keywords 
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ABSTRACT 

Data clustering is a fundamental unsupervised learning technique 

aimed at grouping instances based on their degree of similarity. The 

K-means algorithm is widely recognized for its simplicity and 

computational efficiency; however, its performance is highly 

sensitive to the initial selection of centroids, often leading to 

premature convergence to local optima. To address this limitation, 

this paper proposes a hybrid clustering approach that integrates 

Particle Swarm Optimization (PSO) with K-means to enhance the 

initialization process and accelerate convergence. The main 

contribution of this study lies in improving the robustness and 

effectiveness of K-means without compromising its simplicity. 

Experiments conducted on three well-known benchmark datasets 

demonstrate that the proposed hybrid algorithm consistently 

achieves high-quality clustering solutions with fewer iterations 

compared to the standard K-means, highlighting its practical 

advantages. 

1. INTRODUÇÃO 
O aprendizado de máquina (AM) é um ramo da Inteligência 

Artificial (IA) dedicado ao desenvolvimento de algoritmos capazes 

de identificar padrões e tomar decisões a partir de dados, 

mimetizando processos cognitivos humanos [11, 13]. O AM pode 

ser categorizado principalmente em duas abordagens: 

supervisionado e não supervisionado [10]. 

No AM supervisionado, o modelo é treinado com dados rotulados, 

ou seja, instâncias acompanhadas da resposta correta, permitindo a 

aprendizagem de uma função de mapeamento entre entrada e saída 

[19]. Por outro lado, o AM não supervisionado não dispõe de 

rótulos durante o treinamento; seu objetivo é descobrir estruturas 

ou padrões intrínsecos, frequentemente por meio da formação de 

agrupamentos (clusters) de dados semelhantes [13]. Essa tarefa é 

conhecida como agrupamento de dados (data clustering) e é 

amplamente utilizada em diversas áreas, como mineração de dados, 

análise de imagens e bioinformática [1]. 

Entre os inúmeros algoritmos de agrupamento, o k-means, proposto 

originalmente em meados do século XX [17], destaca-se por sua 

simplicidade e eficiência computacional, tornando-se um método 

padrão para a tarefa. Entretanto, o desempenho do k-means é 

altamente dependente da escolha dos centróides iniciais, o que pode 

resultar em convergência para mínimos locais e soluções subótimas 

[4, 2]. 

Diante desse desafio, heurísticas e metaheurísticas bioinspiradas, 

como a Otimização por Enxame de Partículas (Particle Swarm 

Optimization, PSO) [14], têm sido aplicadas para melhorar a 

seleção dos centróides iniciais, buscando otimizar a qualidade do 

agrupamento e acelerar a convergência [3, 16]. Neste trabalho, 

propõe-se um algoritmo híbrido que integra PSO e k-means, 

explorando a capacidade do PSO em explorar o espaço de soluções 

para determinar inicializações eficazes para o k-means. A 

abordagem visa, assim, mitigar a sensibilidade do k-means à 

inicialização, promovendo convergência mais rápida e soluções de 

maior qualidade. 

Para validar a proposta, foram realizados experimentos com três 

conjuntos de dados amplamente utilizados na literatura, permitindo 

comparações diretas com o k-means tradicional. Como 

contribuição principal, o estudo demonstra que o algoritmo híbrido 

PSO-k-means acelera significativamente o processo de 

convergência e mantém, ou melhora, a qualidade do agrupamento. 

A estrutura deste artigo está organizada da seguinte forma: a Seção 

2 apresenta os fundamentos teóricos essenciais; a Seção 3 discute 

trabalhos relacionados; a Seção 4 descreve a metodologia adotada, 

incluindo modelagem e função de avaliação; as Seções 5 e 6 
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apresentam os resultados experimentais e as conclusões, 

respectivamente. 

2. FUNDAMENTAÇÃO TEÓRICA 
Nesta seção é apresentada a teoria dos algoritmos e detalhamento 

dos componentes necessários para condução da metodologia 

apresentada. 

2.1 Agrupamento de dados com k-means 

A ideia principal do algoritmo k-means é dividir M pontos em N 

dimensões através de k clusters para que a soma de quadrados 

dentro do cluster seja minimizada [12]. 

O algoritmo requer como entrada uma matriz de M pontos e N 

dimensões, e uma matriz com k centróides de cluster iniciais em N 

dimensões. O número de pontos do cluster L é denotado por NC(L). 

Onde D(X,L) é a distância euclidiana entre o ponto X e o cluster L, 

como apresentado na equação 1. 

 

O procedimento geral é procurar uma partição k com a soma de 

quadrados localmente ideal dentro do cluster, movendo pontos de 

um cluster para outro [12]. A estratégia do algoritmo é agrupar 

pontos de dados de maneira que a distância euclidiana entre os 

pontos pertencentes a cada grupo seja minimizada. Desse modo, o 

algoritmo k-means tenta encontrar os melhores centróides dos 

grupos. 

O algoritmo é dividido em dois estágios: um estágio inicial e um 

iterativo. O primeiro estágio envolve a definição dos k centróides; 

e o segundo estágio consiste no cálculo dos k novos centróides [18]. 

O algoritmo é finalizado quando certo critério de parada é 

encontrado, podendo ser número de iterações, ou caso não ocorra 

mais mudanças na posição dos centróides. Desse modo, dado um 

conjunto N de amostras, onde o objetivo é classificar os dados em 

k clusters, o algoritmo tende a minimizar uma função de erro, tal 

como o erro médio quadrático, equação 2. 

 

Em que k é o número de agrupamentos, N o número de amostras, x 

a entrada de cada amostra e cJ é o centróide. O Algoritmo 1 resume 

o treinamento do k-means. 

 

2.2 Particle Swarm Optimization (PSO) 

O algoritmo de otimização por enxame de partículas (do inglês, 

Particle swarm optimization) é um método de otimização que 

simula o comportamento de um bando de pássaros procurando 

alimento [15]. Basicamente um bando de pássaros voando 

aleatoriamente no espaço de busca, onde cada pássaro é um solução 

(partícula). 

 Considere que um conjunto de partículas voa com uma 

determinada velocidade e se move para encontrar a melhor posição 

global em um processo iterativo. A cada iteração do algoritmo, o 

vetor de velocidade para cada partícula é modificado com base em 

três parâmetros: o momento da partícula, a melhor posição 

alcançada pela partícula e a melhor posição de todas as partículas 

até o estágio atual. Então, com base na velocidade determinada para 

cada partícula, ocorre uma movimentação para sua próxima 

posição. Eventualmente, é provável que o enxame, como um todo, 

se aproxime de um nível ótimo de função de aptidão [15]. 

  Em um espaço n-dimensional, a posição e velocidade das 

partículas a cada iteração são definidas pelos vetores Xi
(t) = 

(xi1
(t),xi2

(t), ,... xin
(t)) e Vi

(t) = (vi1
(t),vi2

(t), ,... vin
(t)), respectivamente. 

Usando a função de aptidão (fitness), cada partícula é avaliada em 

cada estágio do algoritmo. Com isso, a melhor posição da partícula 

i a cada iteração do algoritmo é atualizada no vetor Pi =  ( pi1, 

pi2,...pin ), denotado por personal best (pbest). Além disso, a melhor 

posição global (gbest), considerando todas as partículas, também é 

registrada no vetor G = (g1, g2, ...gn ). Em cada iteração a velocidade 

e posição das partículas são calculadas de acordo com as equações 

3 e 4, respectivamente. 

 

 

 Onde, w é chamado peso de inércia, o qual controla o impacto da 

velocidade da partícula. r1 e r2 são duas variáveis aleatórias 

independentemente distribuídas uniformemente no intervalo [0,1]. 

c1 e c2 são constantes positivas chamadas coeficientes de 

aceleração.  

 O processo de atualização da posição das partículas é repetido até 

que um critério de parada seja atingido. Uma condição comum 

usada para finalizar o algoritmo PSO é um número pré-definido de 

iterações. O pseudocódigo do PSO é apresentado no  Algoritmo 2. 

2.3 Bases de dados 

Na tarefa de agrupamento de dados (data clustering) o conjunto de 

amostras é de grande importância. Tanto no aprendizado 

supervisionado como no não supervisionado é necessário uma base 

de dados, a qual o modelo de aprendizado irá aprender correlações 

com esses dados. 

2.3.1 Customers 

O dataset Mall Customer Segmentation Data [20] possui dados 

para segmentação de clientes de um shopping, sendo composto por 

duzentas instâncias contendo informações básicas, como: ID, 

idade, sexo, renda, pontuação de gastos. A Figura 1 apresenta em 

um DataFrame os atributos e dez instâncias em resumo do conjunto 

de amostras. 
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Figura 1: DataFrame com amostra dos dados de customers. 

 

2.3.2 Íris 

O conjunto de dados Íris é talvez a base de dados mais conhecida 

encontrada na literatura para reconhecimento de padrões. O 

conjunto contém 3 classes de 150 instâncias, onde cada classe se 

refere a um tipo de espécie íris e quatro atributos, comprimento e 

largura das sépalas e pétalas. O dataset pode ser obtido pela base 

de dados UCI Machine Learning Repository [7]. A Figura 2 

apresenta os atributos juntamente com as nove primeiras instâncias 

do dataset Íris.  

2.3.3 Wine 

O dataset Wine é também uma base bem conhecida na literatura. 

Os dados do conjunto são resultados de uma análise química de três 

tipos de vinhos cultivados na mesma região da Itália, onde foram 

derivadas 13 quantidades de constituintes encontrados nos três 

tipos analisados. Desse modo, o dataset compreende 3 classes, 

sendo cada uma, um tipo de vinho, e 13 atributos que representam 

elementos da constituição do tipo de vinho [8].O dataset pode ser 

obtido pela base de datasets UCI Machine Learning Repository [9]. 

A Figura 3 apresenta os atributos juntamente com as nove primeiras 

instâncias do dataset Wine.  

 

Figura 2: Dataframe com amostra do conjunto de dados Íris. 

 

Figura 3: Dataframe com amostra do dataset Wine. 

 

Bansal e Gupta [3], propuseram uma abordagem híbrida PSO-k-

means que melhora a robustez do agrupamento diante de ruídos e 

outliers, demonstrando melhor desempenho em datasets reais e 

sintéticos. Liu et al. [16], apresentaram melhorias na função de 

aptidão do PSO para clustering, resultando em uma maior 

separação entre os grupos e convergência mais rápida. 

Outros trabalhos recentes exploram a combinação do PSO com 

aprendizado profundo para agrupar dados de alta dimensionalidade, 

como em Zhang et al. [22], que reportaram avanços significativos 

em escalabilidade e precisão. 

Além disso, algumas pesquisas focam em aprimorar a 

representação das partículas e a modelagem da função de avaliação 

para o PSO no contexto do k-means. Por exemplo, Chen et al. [5] 

propuseram uma notação adaptativa para partículas que melhora a 

exploração do espaço de centróides, enquanto Wang e Li [21] 

desenvolveram uma função de aptidão que incorpora medidas de 

densidade e separação para otimizar a qualidade dos clusters. 

A proposta deste trabalho distingue-se das abordagens citadas ao 

introduzir uma nova modelagem das partículas e uma função de 

aptidão customizada para a PSO, especificamente projetada para 

otimizar a inicialização do k-means. Além disso, realizamos uma 

análise comparativa rigorosa em três datasets amplamente usados, 

ressaltando a eficiência da convergência e a qualidade das soluções, 

destacando o equilíbrio entre desempenho e custo computacional. 

3. METODOLOGIA  
O algoritmo k-means é amplamente reconhecido como uma das 

principais técnicas de agrupamento de dados. No entanto, sua 

principal limitação reside na sensibilidade à escolha inicial dos 

centróides, que são definidos aleatoriamente. Essa aleatoriedade 

pode conduzir a soluções subótimas e aumentar o número de 

iterações até a convergência. Neste trabalho, propomos um 

algoritmo híbrido, denominado k-means-PSO, que integra o 
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Particle Swarm Optimization (PSO) ao k-means com o objetivo de 

aprimorar a inicialização dos centróides e, consequentemente, a 

qualidade do agrupamento. 

Para aplicar o PSO ao problema de agrupamento, é necessário 

modelar adequadamente as partículas (soluções candidatas) e 

definir uma função de aptidão (fitness function) que avalie a 

qualidade de cada solução gerada. Nesta seção, detalhamos os 

principais componentes do PSO, sua adaptação ao contexto de 

agrupamento, e a forma como ele foi integrado ao algoritmo k-

means na abordagem proposta. 

3.1 Modelagem das Partículas 

No contexto do PSO, cada partícula representa uma possível 

solução para o problema, isto é, um conjunto de k centróides. A 

posição da partícula no espaço de busca é definida pelas 

coordenadas dos centróides, enquanto sua velocidade representa o 

deslocamento desses centróides a cada iteração. Inicialmente, as 

posições das partículas são definidas aleatoriamente dentro do 

espaço de atributos dos dados. 

A velocidade é modelada como um vetor com componentes 

correspondentes aos deslocamentos esperados dos centróides em 

relação à melhor posição individual encontrada até o momento 

(pbest) e à melhor posição global (gbest). A atualização das posições 

e velocidades segue as equações tradicionais do PSO (Equações 3 

e 4), promovendo o movimento das partículas em direção a regiões 

do espaço com melhor avaliação de qualidade de agrupamento. 

3.2 Função de Avaliação 

A função de avaliação, ou função de aptidão, tem por objetivo 

quantificar a qualidade de uma partícula, ou seja, da configuração 

de centróides por ela representada. A métrica utilizada foi a soma 

total das distâncias euclidianas entre os dados e seus respectivos 

centróides. Essa função visa minimizar a dispersão intra-cluster, 

conforme definido na Equação 5. 

 

Onde: 

● k é o número de clusters; 

● m é o número de instâncias atribuídas ao cluster i; 

● ci é o centroide do cluster i; 

● pij é a j-ésima instância do cluster i; 

● DE representa a distância euclidiana definida na equação 

1. 

Durante o processo de otimização, a função de aptidão é 

continuamente recalculada após cada atualização da posição das 

partículas, permitindo a identificação de pbest e gbest. 

3.3 Integração PSO e K-means 

Após um número pré-definido de iterações do PSO, a melhor 

partícula global (gbest), que representa o conjunto de centróides mais 

promissor, é utilizada como ponto de partida para o algoritmo k-

means. Dessa forma, o PSO atua como um mecanismo de 

inicialização inteligente, potencialmente conduzindo o k-means a 

uma convergência mais rápida e a agrupamentos de melhor 

qualidade. 

O Pseudocódigo do algoritmo k-means-PSO é apresentado no 

Algoritmo 3. 

 

3.4 Implementação 

O algoritmo k-means-PSO foi implementado em Python no 

ambiente Jupyter Notebook. A função principal recebe como 

parâmetros o número de clusters k, o conjunto de dados, e um 

parâmetro booleano pso que define o método de inicialização. Se 

pso = True, os centróides são gerados pelo PSO; caso contrário, são 

inicializados aleatoriamente. O processo de agrupamento é então 

executado utilizando o k-means com os centróides definidos pela 

escolha inicial. 

3.5 Hiperparâmetros do PSO 

A eficácia do PSO depende diretamente da configuração de seus 

hiperparâmetros, que controlam o comportamento das partículas no 

espaço de busca. Na implementação deste trabalho, utilizamos os 

seguintes hiperparâmetros: 

● npartículas: número de partículas na população. Valor 

adotado: 30; 

● niterações: número máximo de iterações do PSO. Valor 

adotado: 100; 

● w: fator de inércia, responsável por manter o movimento 

anterior da partícula. Valor adotado: 0,72; 

● c1: coeficiente de aprendizado cognitivo, que influencia 

a atração pela melhor posição individual. Valor adotado: 

1,49; 

● c2: coeficiente de aprendizado social, que influencia a 

atração pela melhor posição global. Valor adotado: 1,49. 

Esses valores foram selecionados com base em recomendações da 

literatura [6], visando um equilíbrio entre exploração do espaço de 

busca e convergência eficiente. Adicionalmente, a inicialização 

aleatória das partículas é realizada dentro dos limites definidos 

pelos atributos dos dados de entrada, garantindo diversidade inicial. 
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3.6 Complexidade Computacional 

A complexidade computacional do algoritmo híbrido k-means-PSO 

pode ser analisada a partir de duas fases principais: 

1. Fase PSO: Para cada uma das niterações do PSO, é 

necessário calcular a função de aptidão para cada uma das 

npartículas, o que envolve a atribuição de instâncias aos 

centróides e o cálculo das distâncias. Isso resulta em uma 

complexidade de aproximadamente O(npartículas * k * m * 

d), onde k é o número de clusters, m o número de 

instâncias e d o número de atributos. 

2. Fase K-means: Após a inicialização via PSO, o k-means 

é executado até a convergência. Sua complexidade por 

iteração é O(k * m * d), sendo geralmente mais eficiente 

após uma boa inicialização. 

Em comparação com o k-means tradicional, que é sensível à 

inicialização e pode demandar múltiplas execuções com diferentes 

sementes para garantir bons resultados, o k-means-PSO busca uma 

solução de maior qualidade em uma única execução, com custo 

adicional apenas durante a fase de otimização inicial. 

4. EXPERIMENTOS E RESULTADOS 
Os experimentos foram organizados em três cenários distintos para 

realizar uma análise comparativa entre os algoritmos k-means-PSO 

e k-means, utilizando os datasets Customers, Íris e Wine. 

Na base Customers, foram considerados os atributos Annual 

Income e Spending Score, enquanto nas bases Íris e Wine foram 

utilizados todos os atributos disponíveis, exceto os atributos de 

classe. Para cada cenário, o número de clusters k foi definido de 

acordo com os dados (e.g., 5 para Customers, 3 para Íris e Wine). 

Cada configuração foi executada 30 vezes para garantir robustez 

estatística. 

No k-means-PSO, foi realizada uma busca por parâmetros que 

evitassem a convergência prematura. Os parâmetros testados 

incluíram c1 e c2 no intervalo [1.0, 2.5], e w no intervalo [0.5, 0.9]. 

Os melhores resultados foram obtidos com os valores apresentados 

na Tabela 1. 

Tabela 1: Melhores parâmetros identificados para o K-means-

PSO. 

Parâmetros do algoritmo K-means-PSO 

Parâmetro Descrição Valor 

Tp Número de partículas 100 

N Número de gerações 20 

w Peso de inércia 0,5 

c1 Coeficiente cognitivo 1,0 

c2 Coeficiente social 1,0 

Para avaliar a performance dos algoritmos, foi analisado o número 

de iterações até a convergência e a função objetivo (fitness). A 

Figura 4 apresenta um gráfico de dispersão para o cenário 

Customers, ilustrando os agrupamentos formados pelo algoritmo k-

means-PSO. 

Figura 4: Gráfico de dispersão com clusters gerados pelo k-

means-PSO para a Base de dados: Customers. 

 

Além disso, foram gerados boxplots comparando os algoritmos 

quanto ao número de iterações até a convergência, conforme as 

Figuras 5, 6 e 7.  

Figura 5: Box Plot comparando número de iterações entre k-

means e k-means-PSO. (Base de dados: Customers). 

 

A Tabela 2 apresenta a média do número de iterações até a 

convergência em cada cenário. 

Tabela 2: Média do número de iterações até a convergência por 

algoritmo e dataset. 

Dataset k-means k-means-PSO 

Customers 9,30 8,73 

Íris 6,97 6,47 

Wine 7,50 7,47 
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Figura 6: Box Plot comparando número de iterações entre k-

means e k-means-PSO. (Base de dados: Íris). 

 

Figura 7: Box plot comparando número de iterações entre k-

means e k-means-PSO. (Base de dados Wine). 

 

4.1 Validação Estatística 

Para verificar a significância das diferenças observadas entre os 

algoritmos, foi realizado um teste t pareado (paired t-test) com 

nível de significância 𝛼 = 0,05. Os resultados são apresentados na 

Tabela 3. 

Os valores-p obtidos indicam que não há diferença estatisticamente 

significativa entre os algoritmos nos três datasets avaliados. 

Contudo, a análise gráfica dos boxplots sugere que o k-means-PSO 

apresenta menor variabilidade nas execuções e tendência a soluções 

mais consistentes, o que pode ser vantajoso em aplicações onde a 

estabilidade do resultado é crítica. 

Tabela 3: Resultado do teste t pareado entre k-means e k-

means-PSO para o número de iterações até a convergência. 

Dataset Média k-

means 

Média k-

means-PSO 

valor-p 

Customers 9,30 8,73 0,412 

Íris 6,97 6,47 0,214 

Wine 7,50 7,47 0,962 

5. CONCLUSÃO 
Este trabalho propôs uma abordagem híbrida para o algoritmo k-

means, utilizando o PSO (Particle Swarm Optimization) como 

mecanismo de otimização para a escolha inicial dos centróides. 

Essa proposta visa mitigar a principal limitação do k-means 

clássico, cuja inicialização aleatória pode levar a soluções 

subótimas e maior número de iterações até a convergência. 

Para avaliar o desempenho do algoritmo k-means-PSO, foram 

conduzidos experimentos em três cenários distintos utilizando os 

datasets Customers, Íris e Wine. Os resultados obtidos mostraram 

que a abordagem híbrida tende a reduzir, ainda que modestamente, 

o número médio de iterações até a convergência quando comparada 

ao k-means clássico. Além disso, os boxplots evidenciaram uma 

menor variabilidade nas execuções do k-means-PSO, indicando 

maior estabilidade na geração dos agrupamentos. 

A análise estatística, por meio do teste t pareado, indicou que as 

diferenças observadas entre os algoritmos não são estatisticamente 

significativas ao nível de 5%, embora os resultados visuais e 

descritivos sugerem vantagens operacionais do uso da meta-

heurística PSO, principalmente no que se refere à consistência das 

soluções. 

Por outro lado, foi observado que o PSO pode ocasionalmente ficar 

preso em mínimos locais, o que compromete a qualidade dos 

centróides iniciais e limita os ganhos esperados na convergência do 

k-means. Essa limitação reforça a necessidade de explorar 

estratégias adicionais para guiar a busca em direção a soluções 

globais. 

Como trabalhos futuros, pretende-se investigar a combinação do k-

means com outras meta-heurísticas, como Algoritmos Genéticos, 

além da incorporação de mecanismos adaptativos no PSO que 

promovam a evasão de mínimos locais. Também se planeja aplicar 

a abordagem proposta em conjuntos de dados maiores e mais 

complexos, provenientes de aplicações reais, de modo a validar sua 

escalabilidade e eficácia prática. Tais avanços reforçam o potencial 

das abordagens híbridas na solução de problemas complexos de 

agrupamento em cenários reais. 
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