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ABSTRACT 

The AES symmetric cryptographic algorithm is one of the most 

widely used nowadays. Its encryption process is quite complex and 

difficult to understand. Among encryption operations, one 

particularly is so much complicated to understand: the 

MixColumns. The goal of this work is to describe in detail, 

including an example, how AES MixColumns works. Thus, a 

bibliographical research was carried out to verify what the literature 

deals with regarding this subject in order to contribute positively to 

this work. As results and conclusion the objective of this article was 

reached out, by present all the steps involved in the operation of the 

AES algorithm MixColumn, explained each one of them in detail 

and even demonstrating a complete example of the state 

transformation process, which is the block of input bits of the 

process.   
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1. INTRODUCTION 
The AES symmetric cryptographic algorithm is one of the 

most widely used nowadays [7]. It has four basic operations for 

encrypting and decrypting data, using a very complex and difficult 

cryptographic architecture to understand [5]. 

Particularly, the MixColumns operation is present in the 

encryption function and it is the third and penultimate operation to 

be performed. The four operations performed in AES encryption 

function are executed in this sequence: SubBytes, ShiftRows, 

MixColumns and finally AddRoundKey. MixColumns is a lot of 

substitution that uses arithmetic over GF(28). MixColumns is one 

of the most complex and difficult operations to explain and 

understand. This was the motivation for carrying out this paper and 

unravels how this operation works. In addition, it was created a 

complete example of its cryptographic round. 

Within this context. this article aims to detail the entire process 

of the AES MixColumns operation encryption algorithm and 

provides a complete example of this operation, in order to make it 

easier to understand and for its future implementation in software. 

To this end, this work is then organized as follows: Section 1 deals 

with the introduction; literature background is addressed in Section 

2; Section 3 presents the methodology applied to the paper; Section 

4 deals with the detailed explanation of the MixColumns operation 

functioning and finally, Section 5 refers to the conclusion and 

indication of future work. 

2. BACKGROUND 
Several research literature works are discussed in what follows. The 

main goal is to provide the reader with a general state-of-the-art 

view of the research theme of this present research. 

To make the cloud data stored more secure according to the 

characteristics of cloud computing, in [7], the authors studied the 

modified data encryption algorithm in cloud technology. First, the 

traditional advanced encryption standard AES is analyzed. Then, a 

modified advanced encryption standard for data security in cloud 

computing is proposed by introducing random disturbance 

information to improve data security. Furthermore, the column 

mixing operation and key choreography in AES are improved. 

Formal security analysis and performance comparisons conducted 

by the authors indicate that the proposed solutions simultaneously 

ensure attribute privacy and improve decryption efficiency for 

outsourced data storage in mobile cloud computing. 

Security measures such as data encryption often result in reduced 

performance speed. In [2], the authors performed a work to improve 

the 128-bit version of AES by replacing the MixColumns function 

with a permutation-based approach and decreasing the overall 

number of rounds. The evaluation results indicated a substantial 

improvement in encryption and decryption speed, with a 76.76% 

improvement in encryption time and a 55.46% improvement in 

decryption time. Furthermore, the authors report that it is important 

to mention that the modifications implemented in the standard AES 

did not compromise its security respecting to the avalanche effect 

criterion, which for the modified AES is 52.92%, exceeding the 

minimum requirement of 50%. Finally, the modified AES 

demonstrated a 31.12% increase in throughput for encryption and 

a 25.50% increase for decryption when compared to the original 

AES, using the sample dataset. 

In [9], the authors carried out a study to show how the Mixcolumn 

operation works using examples, but beyond the example, it does 

not really explain how this AES operation works. In [5], the authors 

proposed a technique for the modification of MixColumns using 

Very Large Scale Integration (VLSI) system design. The modified 

MixColumns transformation improves the performance of the AES 

algorithm. In the proposed technique, the door counts in the 

MixColumns process have been reduced. When compared to 

existing AES encryption and Decryption using MixColumns-based 

Xtime multiplication, the proposed optimized MixColumns-based 

AES decryption provides better performance. 

Block ciphers, particularly Substitution-Permutation Network 

(SPN) such as AES, are widely used in contemporary 

cryptography. However, they face strong cryptanalysis including 

differential, linear and algebraic cryptanalysis. Therefore, 
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increasing the security of block ciphers, particularly AES, is an 

urgent area of research. In addition to security, the execution cost 

of block ciphers is crucial. In [8], the authors conducted a research 

work that elucidates how Maximum Distance Separable (MDS) 

matrices increase the number of diffusion layer branches in block 

ciphers, increasing their security. The authors propose a method to 

increase the security of AES by altering its Mixcolumns 

transformation using efficient MDS matrices of various sizes. 

Furthermore, they created a technique to evaluate the fixed point 

coefficients of D(A) and fixed points in the modified AES diffusion 

layers. They demonstrated the number of branches of modified 

AES diffusion layers with MDS matrices of sizes 8 and 16, 

analyzing their security, statistical patterns, and execution speed. 

Their discovery indicates a significant improvement in AES 

security through their proposed approach. 

In [3], the authors modified AES MixColumns based on cellular 

automata functions. AES has no compression, but it has good 

accessibility compared to other algorithms. The modified AES 

hardware implementation provides efficient memory space and 

area consumption. Comparative study of architecture Security 

analysis as Fast Walsh Transform method is followed to verify the 

security in modified AES algorithm. Traditional Mixcolumns and 

Cellular Automata-based Mixcolumns architecture is done through 

hardware simulation in Xilinx tool, to show the Field-

Programmable Gate Array (FPGA) implementation of AES results 

as a lightweight cipher, in terms of memory requirement. 

In [1], the authors proposed an implementation of the AES 

MixColumns operation where a compact architecture for the AES 

MixColumns operation and its inverse with hardware 

implementation is presented. The authors show that the design has 

a lower gate count than other designs that implement both the 

forward and inverse MixColumns operation. Comparisons indicate 

that the proposed MixColumns design has less complexity than 

previous relevant work in gate size and number of clock cycles.  

This compact design can help implement AES for smart cards, 

RFID tags, and wireless sensors. 

Finally, in [10], the authors presentes in their work an efficient 

method to calculate the circulating matrices in the AES 

MixColumns transformation to accelerate encryption. Using the 

multiplication of 8×8 involutional matrices, 64 multiplications and 

56 additions are required in the Mix-Columns transformation.  The 

authors proposed a method with diversity of 8×8 circulating 

matrices and in which only 19 multiplications and 57 additions are 

required for both encryption and decryption operations. Therefore, 

the 8×8 circulant matrix operation with AES key sizes of 128-bit, 

192-bit, and 256-bit is over 33.5%, 33.7%, and 33.9% faster than 

using the 4×4 involutory matrix operation (16 multiplications, 12 

additions), respectively. The encryption/decryption speed of 8×8 

circulating matrix is over 79% faster than that of 8×8 involutional 

matrix operation. Finally, the proposed method for evaluating 

matrix multiplication can be made regular, simple and suitable for 

software implementations in embedded systems. 

3. METHODOLOGY 
To construct this work, a bibliographical survey was carried out in 

renowned books, articles and websites on the subject to obtain the 

necessary information to formulate the knowledge base of this 

article core. 

This work is heavily dependent on modern mathematical concepts 

that are essential to understanding what this article proposes, which 

is a complete understanding of how the AES MixColumns 

operation works. 

The following section is entirely dedicated to these mathematical 

concepts that will serve as a basis for understanding the subsequent 

sections. 

4. PRELIMINARY CONCEPTS 
The MixColumns operation makes extensive use of the concept of 

finite fields and in this way, what this mathematical knowledge is 

and how to use it, in practice, in cryptographic algorithms such as 

AES will be presented below. This transformation provides good 

diffusion properties in the AES algorithm [3]. 

Several cryptographic algorithms rely widely on properties of finite 

fields, notably the Advanced Encryption Standard (AES) and 

elliptic curve cryptography [6]. Other examples include the CMAC 

message authentication code, which is an authentication technique 

that uses a cipher algorithm such as AES to generate an 

authentication code for a message, and the GCM authenticated 

encryption scheme, which is an authenticated encryption mode of 

operation that combines symmetric encryption with message 

authentication, providing an efficient and secure solution for data 

encryption and authentication. 

Finite fields is a subset of fields, consisting of those fields with a 

finite number of elements. These are the classes of fields that are 

found in cryptographic algorithms. 

The most important class of finite fields, for cryptography, 

comprises within 2n elements described as fields of the form 

GF(2n). They are used in a wide variety of cryptographic 

algorithms. However, before discussing these fields, it is necessary 

to analyze the topic of polynomial arithmetic. 

The finite field of pn order is usually written GF(pn); GF stands for 

Galois field, named after the mathematician who first studied finite 

fields. Two special cases are of this purpose interest. For n = 1, is 

called finite field GF(p); this finite field has a different structure 

from the finite fields with n > 1. For finite fields of GF(pn) form, 

GF(2n) fields are of particular cryptographic interest [6]. 

For a given prime, p, we define the finite field of order p, GF(p), as 

the set Zp of integers {0, 1, ... , p - 1} with the arithmetic operations 

modulo p. Note, therefore, that ordinary modular arithmetic is 

being used to define the operations on these fields. 

Some transformations of the AES algorithms specified in Section 

5, each byte in the state array is interpreted as one of the 256 

elements of a finite field denoted by GF(28) [4]. 

In addition and multiplication defined in GF(28), each byte {b7 b6 

b5 b4 b3 b2 b1 b0} is interpreted as a polynomial, denoted by b(x), as 

follows: 

b(x)=b7x7+b6x6+b5x5+b4x4+b3x3+b2x2+b1x+b0                              (1) 

For example: {10110011} is equivalent to the polynomial: x7 + x5 

+ x4 + x + 1. 

4.1 Addition in GF(28) 
Addition in this field is the performance of exclusive or (XOR) 

operations, which is represented by the symbol  ⊕. 

The elementary operations are:  

1 ⊕ 1 = 0; 1 ⊕ 0 = 1; and 0 ⊕ 0 = 0. 
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As examples of this operation, three representations are presented 

that are identical and indicate the same results. 

(X4 + X2 + 1)   +   (X7 + X3)    =    X7 + X4 + X3 + X2 + 1 (polinomial) 

{00010101} ⊕ {10001000} = {10011101}                     (binary)          (2) 

{15} ⊕ {F8} = {9F}                                                        (hexadecimal) 

4.2 Multiplication of a word by a fixed Matrix 
Algorithms for AES block ciphers can be expressed in terms of 

matrix multiplication. In particular, a distinct fixed matrix is 

specified for each transformation. For both matrices, each of the 16 

entries of the matrix is a byte of a single specified word, denoted 

here by [a0,a1,a2,a3] (STALLING, 2017). 

In a given input word [b0,b1,b2,b3] for the transformation, the output 

word [d0,d1,d2,d3] is determined by finite field arithmetic as 

follows: 

d0 =(a0 • b0)⊕(a3 • b1)⊕(a2 • b2)⊕(a1 • b3)  

d1 =(a1 • b0)⊕(a0 • b1)⊕(a3 • b2)⊕(a2 • b3)                          (3) 

d2 =(a2 • b0)⊕(a1 • b1)⊕(a0 • b2)⊕(a3 • b3)  

d3 =(a3 • b0)⊕(a2 • b1)⊕(a1 • b2)⊕(a0 • b3)   

These two mathematical operations are used in the AES 

MixColumns operation. 

5. MIXCOLUMNS OPERATION  
MixColumn is equivalent to matrix multiplication of each column 

of the state. A fixed matrix is multiplied to each column vector. In 

this operation, bytes are taken as polynomials instead of numbers. 

The state transformation that takes all the columns in the state and 

shuffles their data (independently of each other) to produce new 

columns. 

Each column of the state matrix is represented as a vector with 

coefficients in GF (28). Thus, this vector is multiplied by a constant 

4x4 matrix over GF(28) as indicated in Figure 2. 

Figure 1 presents the AES encryption function, so that it can be 

identified in the algorithm where the MixColumns operation is 

found in the general context. 

 

 

Fig. 1: AES encryption function. Source: [6]. 

Note in Figure 1 the initial vector of 128 bits is called state, or 4 

groups of MixColumns (yellow and green blocks in Figure 1) of 4 

words with 8 bits (1 byte) each, which is input to the AES 

encryption function and used throughout the process. The 

transformation of this vector is also called state. Thus, the 

MixColumns operation input is a 128-bit vector originating from 

the transformation of the state that came from the previous 

operation, ShiftRows. 

MixColumns operates with each column individually. Each byte in 

a column is mapped into a new value that is a function of all four 

bytes in that column. The transformation can be defined by the 

following matrix multiplication in state (Figure 2): 

 

Fig. 2: MixColumns Illustration. Source: adapted from [6]. 

As Figure 2 indicates, the first column of state multiplies the first 

row of the constant matrix resulting in the first column of the new 

state; the second column of state multiplies the second row of the 

constant matrix resulting in the second column of the new state, and 

so on. 

Thus, each element in the product matrix is the sum of the products 

of the elements in a row and a column. In this case, individual 

additions and multiplications are performed in GF(28). 

 

 

(4) 

One way of visualizing this matrix multiplication is presented in 

the four equations (5), where s’ represents the output of the 4x4 

matrix, which is the new state of the next stage input. Figure 2 

illustrates this MixColumns matrix multiplication. Where in the 

equations (5) the index j varies according to 0 ≤ j < 4. The 

MixColumns transformation on a single state column can be 

expressed as indicated in the equation (5). 

 

 

 

 

(5) 

 

In order to make it easy to understand, an example of this 

multiplication of matrices will be presented, which results in the 

execution of the equations (5). 
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Let the following matrix (4x4) be the input state of MixColumns: 

5F 13 46 17 

22 2C 19 21 

A0 1B 30 09 

57 11 FE 20 

 

Adjusting the matrix multiplication to suit the MixColumns 

process, where the first matrix is composed of constants and the 

second matrix is the state, will look like this: 

2 3 1 1 

1 2 3 1 

1 1 2 3 

3 1 1 2 

Constants 

5F 13 46 1

7 

22 2

C 

19 2

1 

A

0 

1

B 

30 0

9 

57 11 F

E 

2

0 

State 

 

 

= 

 

 

S’0,

0 

S’0,

1 

S’0,

2 

S’0,

3 

S’1,

0 

S’1,

1 

S’1,

2 

S’1,

3 

S’2,

0 

S’2,

1 

S’2,

2 

S’2,

3 

S’3,

0 

S’3,

1 

S’3,

2 

S’3,

3 

New state 

Applying formulas (5) to the first column of the state we have: 

S’0,0 = ({02} . {5F}) ⊕ ({03} . {22}) ⊕ {A0} ⊕ {57} 

S’1,0 = {5F} ⊕ ({02} . {22}) ⊕ ({03} . {A0}) ⊕ {57} 

S’2,0 = {5F} ⊕ {22}  ⊕ ({02} . {A0}) ⊕ ({03} . {57}) 

S’3,0 = ({03} . {5F}) ⊕ {22} ⊕ {A0}  ⊕ ({02} . {57}) 

 

In S’0,0 transforming the numbers from hexadecimal to binary we 

have: 

S’0,0 = ({02} . {5F}) ⊕ ({03} . {22}) ⊕ {A0} ⊕ {57} 

S’0,0 = ({10} . {01011111}) ⊕ ({11} . {00100010}) ⊕ 

{10100000} ⊕ {01010111} 

S’0,0 = {10111110} ⊕ {01100110} ⊕ {10100000} ⊕ {01010111} 

where, 

S’0,0 = {11010111}, passing to hexadecimal we have: D7 

S’0,0 = D7 

Calculating for S’1,0 we have: 

S’1,0 = {5F} ⊕ ({02} . {22}) ⊕ ({03} . {A0}) ⊕ {57} 

In S’1,0 transforming the numbers from hexadecimal to binary we 

have: 

S’1,0 = {01011111} ⊕ ({10} . {00100010}) ⊕ ({11} . 

{10100000}) ⊕ {01010111} 

S’1,0 = {01011111} ⊕ {01000100} ⊕ {11100000} ⊕ {01010111} 

S’1,0 = {01001100}, passing to hexadecimal we have: 4C 

S’1,0 = 4C 

Calculating for S’2,0 we have: 

S’2,0 = {5F} ⊕ {22} ⊕ ({02} . {A0}) ⊕ ({03} . {57}) 

In S’2.0 transforming the numbers from hexadecimal to binary we 

have:S’2,0 = {01011111} ⊕ {00100010} ⊕ ({10} . {10100000}) 

⊕ ({11} . {01010111}) 

S’2,0 = {01011111} ⊕ {00100010} ⊕ {01000000} ⊕ {11110101} 

S’2,0 = {01001010}, passing to hexadecimal we have: 4A 

S’2,0 = 4A 

Calculating for S’3.0 we have: 

S’3,0 = ({03} . {5F}) ⊕ {22} ⊕ {A0} ⊕ ({02} . {57}) 

In S’3.0 transforming the numbers from hexadecimal to binary we 

have: 

S’3,0 = ({11} . {01011111}) ⊕ {00100010} ⊕ {10100000} ⊕ 

({10} . {01010111}) 

S’3,0 = {00011101} ⊕ {00100010} ⊕ {10100000} ⊕ {10101110} 

S’3,0 = {00110001}, passing to hexadecimal we have: 31 

S’3,0 = 31 

Now the output matrix will be updated, looking like this: 

 

D7 S’0,1 S’0,2 S’0,3 

5C S’1,1 S’1,2 S’1,3 

4A S’2,1 S’2,2 S’2,3 

31 S’3,1 S’3,2 S’3,3 

 

Calculating for the other columns as indicated for column 1 and 

applying the formulas (5) we have the complete matrix below as 

the new state for input in the next operation of the AES encryption 

algorithm, which is AddRoundKey. 

 

D7 83 09 64 

C5 8F 1A 6E 

4A 04 45 44 

31 32 01 29 

 

Another way to characterize the MixColumns transformation is in 

terms of polynomial arithmetic. In the standard, MixColumns is 

defined by considering each column of State as a four-term 

polynomial with coefficients in GF(28). Each column is multiplied 

modulo (x4 + 1) by the fixed polynomial a(x), given by: 

 

a(x) = {03}x3 + {01}x2 + {01}x + {02}                                       (6)    

 

This expression will not be applied in this article, but it was 

presented here because it actually represents the finite field for 

GF(28), that is, in polynomial form as indicated in Formula (6). 

As noted, the initial state of MixColumn is heavily modified with 

the finite field transformation GF(28) giving the AES algorithm the 

nonlinearity to make it even more secure against linear and 

differential cryptanalysis attacks. 
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6. CONCLUSION 
The present study aimed to elucidate, in a detailed and systematic 

manner, the functioning of the MixColumns operation in the 

Advanced Encryption Standard (AES) algorithm. To achieve this 

purpose, a bibliographical and theoretical investigation was 

conducted, grounded in the mathematical framework of finite fields 

(GF(2⁸)) and matrix algebra. This methodological approach 

enabled a rigorous reconstruction of the MixColumns procedure, 

supplemented by a fully worked numerical example that illustrates 

each computational step involved in the transformation. 

The results obtained demonstrate the complete execution of the 

MixColumns operation, encompassing the conversion between 

hexadecimal, binary, and polynomial representations, as well as the 

successive applications of finite field arithmetic that yield the final 

state matrix. Through this systematic exposition, the work provides 

a transparent and comprehensive understanding of how diffusion 

and nonlinearity are introduced within AES, both of which are 

fundamental to the cipher’s resistance against differential and linear 

cryptanalysis. 

The principal contribution of this study resides in its didactic and 

analytical value. By articulating the mathematical underpinnings of 

the MixColumns operation in a clear and structured manner, the 

research enhances the accessibility of complex cryptographic 

concepts and supports the correct implementation of AES in 

software and hardware environments. Furthermore, the discussion 

reinforces the importance of finite field operations as a cornerstone 

of contemporary symmetric cryptography, linking theoretical 

abstraction to practical security mechanisms. 

Building upon the findings presented herein, several avenues for 

further investigation are suggested: (1) a comparative and detailed 

study of the remaining AES transformations—SubBytes, 

ShiftRows, and AddRoundKey; (2) the exploration of hardware-

optimized architectures for MixColumns to improve performance 

and energy efficiency; (3) the examination of modified AES 

variants incorporating alternative diffusion matrices or reduced 

computational complexity; and (4) the development of educational 

frameworks, visualization tools, or simulation environments aimed 

at facilitating the teaching and comprehension of finite field–based 

cryptographic operations. 
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