
50

Revista de Sistemas e Computação, Salvador, v. 15, n. 2, p. 50-54, mai/ago 2025

https://revistas.unifacs.br/index.php/rsc

Unraveling the MixColumns Operation of the AES Cipher
Function

José Gladistone da Rocha
Ministério da Defesa

Secretaria de Planejamento Baseado em
Capacidade

Brasília, DF, Brasil
jgladistone@gmail.com

Carlo Kleber da Silva Rodrigues
Center for Mathematics, Computing and Cognition

Federal University of ABC (UFABC)
Santo André, São Paulo, Brazil

carlo.kleber@ufabc.edu.br

ABSTRACT

The AES symmetric cryptographic algorithm is one of the most

widely used nowadays. Its encryption process is quite complex and

difficult to understand. Among encryption operations, one

particularly is so much complicated to understand: the

MixColumns. The goal of this work is to describe in detail,

including an example, how AES MixColumns works. Thus, a

bibliographical research was carried out to verify what the literature

deals with regarding this subject in order to contribute positively to

this work. As results and conclusion the objective of this article was

reached out, by present all the steps involved in the operation of the

AES algorithm MixColumn, explained each one of them in detail

and even demonstrating a complete example of the state

transformation process, which is the block of input bits of the

process.

CCS Concepts

• Security systems➝Cryptography

Keywords

Chiper; Cryptography; Encryption; MixColumns; Process.

1. INTRODUCTION
The AES symmetric cryptographic algorithm is one of the

most widely used nowadays [7]. It has four basic operations for

encrypting and decrypting data, using a very complex and difficult

cryptographic architecture to understand [5].

Particularly, the MixColumns operation is present in the

encryption function and it is the third and penultimate operation to

be performed. The four operations performed in AES encryption

function are executed in this sequence: SubBytes, ShiftRows,

MixColumns and finally AddRoundKey. MixColumns is a lot of

substitution that uses arithmetic over GF(28). MixColumns is one

of the most complex and difficult operations to explain and

understand. This was the motivation for carrying out this paper and

unravels how this operation works. In addition, it was created a

complete example of its cryptographic round.

Within this context. this article aims to detail the entire process

of the AES MixColumns operation encryption algorithm and

provides a complete example of this operation, in order to make it

easier to understand and for its future implementation in software.

To this end, this work is then organized as follows: Section 1 deals

with the introduction; literature background is addressed in Section

2; Section 3 presents the methodology applied to the paper; Section

4 deals with the detailed explanation of the MixColumns operation

functioning and finally, Section 5 refers to the conclusion and

indication of future work.

2. BACKGROUND
Several research literature works are discussed in what follows. The

main goal is to provide the reader with a general state-of-the-art

view of the research theme of this present research.

To make the cloud data stored more secure according to the

characteristics of cloud computing, in [7], the authors studied the

modified data encryption algorithm in cloud technology. First, the

traditional advanced encryption standard AES is analyzed. Then, a

modified advanced encryption standard for data security in cloud

computing is proposed by introducing random disturbance

information to improve data security. Furthermore, the column

mixing operation and key choreography in AES are improved.

Formal security analysis and performance comparisons conducted

by the authors indicate that the proposed solutions simultaneously

ensure attribute privacy and improve decryption efficiency for

outsourced data storage in mobile cloud computing.

Security measures such as data encryption often result in reduced

performance speed. In [2], the authors performed a work to improve

the 128-bit version of AES by replacing the MixColumns function

with a permutation-based approach and decreasing the overall

number of rounds. The evaluation results indicated a substantial

improvement in encryption and decryption speed, with a 76.76%

improvement in encryption time and a 55.46% improvement in

decryption time. Furthermore, the authors report that it is important

to mention that the modifications implemented in the standard AES

did not compromise its security respecting to the avalanche effect

criterion, which for the modified AES is 52.92%, exceeding the

minimum requirement of 50%. Finally, the modified AES

demonstrated a 31.12% increase in throughput for encryption and

a 25.50% increase for decryption when compared to the original

AES, using the sample dataset.

In [9], the authors carried out a study to show how the Mixcolumn

operation works using examples, but beyond the example, it does

not really explain how this AES operation works. In [5], the authors

proposed a technique for the modification of MixColumns using

Very Large Scale Integration (VLSI) system design. The modified

MixColumns transformation improves the performance of the AES

algorithm. In the proposed technique, the door counts in the

MixColumns process have been reduced. When compared to

existing AES encryption and Decryption using MixColumns-based

Xtime multiplication, the proposed optimized MixColumns-based

AES decryption provides better performance.

Block ciphers, particularly Substitution-Permutation Network

(SPN) such as AES, are widely used in contemporary

cryptography. However, they face strong cryptanalysis including

differential, linear and algebraic cryptanalysis. Therefore,

51

Revista de Sistemas e Computação, Salvador, v. 15, n. 2, p. 50-54, mai/ago 2025

https://revistas.unifacs.br/index.php/rsc

increasing the security of block ciphers, particularly AES, is an

urgent area of research. In addition to security, the execution cost

of block ciphers is crucial. In [8], the authors conducted a research

work that elucidates how Maximum Distance Separable (MDS)

matrices increase the number of diffusion layer branches in block

ciphers, increasing their security. The authors propose a method to

increase the security of AES by altering its Mixcolumns

transformation using efficient MDS matrices of various sizes.

Furthermore, they created a technique to evaluate the fixed point

coefficients of D(A) and fixed points in the modified AES diffusion

layers. They demonstrated the number of branches of modified

AES diffusion layers with MDS matrices of sizes 8 and 16,

analyzing their security, statistical patterns, and execution speed.

Their discovery indicates a significant improvement in AES

security through their proposed approach.

In [3], the authors modified AES MixColumns based on cellular

automata functions. AES has no compression, but it has good

accessibility compared to other algorithms. The modified AES

hardware implementation provides efficient memory space and

area consumption. Comparative study of architecture Security

analysis as Fast Walsh Transform method is followed to verify the

security in modified AES algorithm. Traditional Mixcolumns and

Cellular Automata-based Mixcolumns architecture is done through

hardware simulation in Xilinx tool, to show the Field-

Programmable Gate Array (FPGA) implementation of AES results

as a lightweight cipher, in terms of memory requirement.

In [1], the authors proposed an implementation of the AES

MixColumns operation where a compact architecture for the AES

MixColumns operation and its inverse with hardware

implementation is presented. The authors show that the design has

a lower gate count than other designs that implement both the

forward and inverse MixColumns operation. Comparisons indicate

that the proposed MixColumns design has less complexity than

previous relevant work in gate size and number of clock cycles.

This compact design can help implement AES for smart cards,

RFID tags, and wireless sensors.

Finally, in [10], the authors presentes in their work an efficient

method to calculate the circulating matrices in the AES

MixColumns transformation to accelerate encryption. Using the

multiplication of 8×8 involutional matrices, 64 multiplications and

56 additions are required in the Mix-Columns transformation. The

authors proposed a method with diversity of 8×8 circulating

matrices and in which only 19 multiplications and 57 additions are

required for both encryption and decryption operations. Therefore,

the 8×8 circulant matrix operation with AES key sizes of 128-bit,

192-bit, and 256-bit is over 33.5%, 33.7%, and 33.9% faster than

using the 4×4 involutory matrix operation (16 multiplications, 12

additions), respectively. The encryption/decryption speed of 8×8

circulating matrix is over 79% faster than that of 8×8 involutional

matrix operation. Finally, the proposed method for evaluating

matrix multiplication can be made regular, simple and suitable for

software implementations in embedded systems.

3. METHODOLOGY
To construct this work, a bibliographical survey was carried out in

renowned books, articles and websites on the subject to obtain the

necessary information to formulate the knowledge base of this

article core.

This work is heavily dependent on modern mathematical concepts

that are essential to understanding what this article proposes, which

is a complete understanding of how the AES MixColumns

operation works.

The following section is entirely dedicated to these mathematical

concepts that will serve as a basis for understanding the subsequent

sections.

4. PRELIMINARY CONCEPTS
The MixColumns operation makes extensive use of the concept of

finite fields and in this way, what this mathematical knowledge is

and how to use it, in practice, in cryptographic algorithms such as

AES will be presented below. This transformation provides good

diffusion properties in the AES algorithm [3].

Several cryptographic algorithms rely widely on properties of finite

fields, notably the Advanced Encryption Standard (AES) and

elliptic curve cryptography [6]. Other examples include the CMAC

message authentication code, which is an authentication technique

that uses a cipher algorithm such as AES to generate an

authentication code for a message, and the GCM authenticated

encryption scheme, which is an authenticated encryption mode of

operation that combines symmetric encryption with message

authentication, providing an efficient and secure solution for data

encryption and authentication.

Finite fields is a subset of fields, consisting of those fields with a

finite number of elements. These are the classes of fields that are

found in cryptographic algorithms.

The most important class of finite fields, for cryptography,

comprises within 2n elements described as fields of the form

GF(2n). They are used in a wide variety of cryptographic

algorithms. However, before discussing these fields, it is necessary

to analyze the topic of polynomial arithmetic.

The finite field of pn order is usually written GF(pn); GF stands for

Galois field, named after the mathematician who first studied finite

fields. Two special cases are of this purpose interest. For n = 1, is

called finite field GF(p); this finite field has a different structure

from the finite fields with n > 1. For finite fields of GF(pn) form,

GF(2n) fields are of particular cryptographic interest [6].

For a given prime, p, we define the finite field of order p, GF(p), as

the set Zp of integers {0, 1, ... , p - 1} with the arithmetic operations

modulo p. Note, therefore, that ordinary modular arithmetic is

being used to define the operations on these fields.

Some transformations of the AES algorithms specified in Section

5, each byte in the state array is interpreted as one of the 256

elements of a finite field denoted by GF(28) [4].

In addition and multiplication defined in GF(28), each byte {b7 b6

b5 b4 b3 b2 b1 b0} is interpreted as a polynomial, denoted by b(x), as

follows:

b(x)=b7x7+b6x6+b5x5+b4x4+b3x3+b2x2+b1x+b0 (1)

For example: {10110011} is equivalent to the polynomial: x7 + x5

+ x4 + x + 1.

4.1 Addition in GF(28)
Addition in this field is the performance of exclusive or (XOR)

operations, which is represented by the symbol ⊕.

The elementary operations are:

1 ⊕ 1 = 0; 1 ⊕ 0 = 1; and 0 ⊕ 0 = 0.

52

Revista de Sistemas e Computação, Salvador, v. 15, n. 2, p. 50-54, mai/ago 2025

https://revistas.unifacs.br/index.php/rsc

As examples of this operation, three representations are presented

that are identical and indicate the same results.

(X4 + X2 + 1) + (X7 + X3) = X7 + X4 + X3 + X2 + 1 (polinomial)

{00010101} ⊕ {10001000} = {10011101} (binary) (2)

{15} ⊕ {F8} = {9F} (hexadecimal)

4.2 Multiplication of a word by a fixed Matrix
Algorithms for AES block ciphers can be expressed in terms of

matrix multiplication. In particular, a distinct fixed matrix is

specified for each transformation. For both matrices, each of the 16

entries of the matrix is a byte of a single specified word, denoted

here by [a0,a1,a2,a3] (STALLING, 2017).

In a given input word [b0,b1,b2,b3] for the transformation, the output

word [d0,d1,d2,d3] is determined by finite field arithmetic as

follows:

d0 =(a0 • b0)⊕(a3 • b1)⊕(a2 • b2)⊕(a1 • b3)

d1 =(a1 • b0)⊕(a0 • b1)⊕(a3 • b2)⊕(a2 • b3) (3)

d2 =(a2 • b0)⊕(a1 • b1)⊕(a0 • b2)⊕(a3 • b3)

d3 =(a3 • b0)⊕(a2 • b1)⊕(a1 • b2)⊕(a0 • b3)

These two mathematical operations are used in the AES

MixColumns operation.

5. MIXCOLUMNS OPERATION
MixColumn is equivalent to matrix multiplication of each column

of the state. A fixed matrix is multiplied to each column vector. In

this operation, bytes are taken as polynomials instead of numbers.

The state transformation that takes all the columns in the state and

shuffles their data (independently of each other) to produce new

columns.

Each column of the state matrix is represented as a vector with

coefficients in GF (28). Thus, this vector is multiplied by a constant

4x4 matrix over GF(28) as indicated in Figure 2.

Figure 1 presents the AES encryption function, so that it can be

identified in the algorithm where the MixColumns operation is

found in the general context.

Fig. 1: AES encryption function. Source: [6].

Note in Figure 1 the initial vector of 128 bits is called state, or 4

groups of MixColumns (yellow and green blocks in Figure 1) of 4

words with 8 bits (1 byte) each, which is input to the AES

encryption function and used throughout the process. The

transformation of this vector is also called state. Thus, the

MixColumns operation input is a 128-bit vector originating from

the transformation of the state that came from the previous

operation, ShiftRows.

MixColumns operates with each column individually. Each byte in

a column is mapped into a new value that is a function of all four

bytes in that column. The transformation can be defined by the

following matrix multiplication in state (Figure 2):

Fig. 2: MixColumns Illustration. Source: adapted from [6].

As Figure 2 indicates, the first column of state multiplies the first

row of the constant matrix resulting in the first column of the new

state; the second column of state multiplies the second row of the

constant matrix resulting in the second column of the new state, and

so on.

Thus, each element in the product matrix is the sum of the products

of the elements in a row and a column. In this case, individual

additions and multiplications are performed in GF(28).

(4)

One way of visualizing this matrix multiplication is presented in

the four equations (5), where s’ represents the output of the 4x4

matrix, which is the new state of the next stage input. Figure 2

illustrates this MixColumns matrix multiplication. Where in the

equations (5) the index j varies according to 0 ≤ j < 4. The

MixColumns transformation on a single state column can be

expressed as indicated in the equation (5).

(5)

In order to make it easy to understand, an example of this

multiplication of matrices will be presented, which results in the

execution of the equations (5).

53

Revista de Sistemas e Computação, Salvador, v. 15, n. 2, p. 50-54, mai/ago 2025

https://revistas.unifacs.br/index.php/rsc

Let the following matrix (4x4) be the input state of MixColumns:

5F 13 46 17

22 2C 19 21

A0 1B 30 09

57 11 FE 20

Adjusting the matrix multiplication to suit the MixColumns

process, where the first matrix is composed of constants and the

second matrix is the state, will look like this:

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

Constants

5F 13 46 1

7

22 2

C

19 2

1

A

0

1

B

30 0

9

57 11 F

E

2

0

State

=

S’0,

0

S’0,

1

S’0,

2

S’0,

3

S’1,

0

S’1,

1

S’1,

2

S’1,

3

S’2,

0

S’2,

1

S’2,

2

S’2,

3

S’3,

0

S’3,

1

S’3,

2

S’3,

3

New state

Applying formulas (5) to the first column of the state we have:

S’0,0 = ({02} . {5F}) ⊕ ({03} . {22}) ⊕ {A0} ⊕ {57}

S’1,0 = {5F} ⊕ ({02} . {22}) ⊕ ({03} . {A0}) ⊕ {57}

S’2,0 = {5F} ⊕ {22} ⊕ ({02} . {A0}) ⊕ ({03} . {57})

S’3,0 = ({03} . {5F}) ⊕ {22} ⊕ {A0} ⊕ ({02} . {57})

In S’0,0 transforming the numbers from hexadecimal to binary we

have:

S’0,0 = ({02} . {5F}) ⊕ ({03} . {22}) ⊕ {A0} ⊕ {57}

S’0,0 = ({10} . {01011111}) ⊕ ({11} . {00100010}) ⊕

{10100000} ⊕ {01010111}

S’0,0 = {10111110} ⊕ {01100110} ⊕ {10100000} ⊕ {01010111}

where,

S’0,0 = {11010111}, passing to hexadecimal we have: D7

S’0,0 = D7

Calculating for S’1,0 we have:

S’1,0 = {5F} ⊕ ({02} . {22}) ⊕ ({03} . {A0}) ⊕ {57}

In S’1,0 transforming the numbers from hexadecimal to binary we

have:

S’1,0 = {01011111} ⊕ ({10} . {00100010}) ⊕ ({11} .

{10100000}) ⊕ {01010111}

S’1,0 = {01011111} ⊕ {01000100} ⊕ {11100000} ⊕ {01010111}

S’1,0 = {01001100}, passing to hexadecimal we have: 4C

S’1,0 = 4C

Calculating for S’2,0 we have:

S’2,0 = {5F} ⊕ {22} ⊕ ({02} . {A0}) ⊕ ({03} . {57})

In S’2.0 transforming the numbers from hexadecimal to binary we

have:S’2,0 = {01011111} ⊕ {00100010} ⊕ ({10} . {10100000})

⊕ ({11} . {01010111})

S’2,0 = {01011111} ⊕ {00100010} ⊕ {01000000} ⊕ {11110101}

S’2,0 = {01001010}, passing to hexadecimal we have: 4A

S’2,0 = 4A

Calculating for S’3.0 we have:

S’3,0 = ({03} . {5F}) ⊕ {22} ⊕ {A0} ⊕ ({02} . {57})

In S’3.0 transforming the numbers from hexadecimal to binary we

have:

S’3,0 = ({11} . {01011111}) ⊕ {00100010} ⊕ {10100000} ⊕

({10} . {01010111})

S’3,0 = {00011101} ⊕ {00100010} ⊕ {10100000} ⊕ {10101110}

S’3,0 = {00110001}, passing to hexadecimal we have: 31

S’3,0 = 31

Now the output matrix will be updated, looking like this:

D7 S’0,1 S’0,2 S’0,3

5C S’1,1 S’1,2 S’1,3

4A S’2,1 S’2,2 S’2,3

31 S’3,1 S’3,2 S’3,3

Calculating for the other columns as indicated for column 1 and

applying the formulas (5) we have the complete matrix below as

the new state for input in the next operation of the AES encryption

algorithm, which is AddRoundKey.

D7 83 09 64

C5 8F 1A 6E

4A 04 45 44

31 32 01 29

Another way to characterize the MixColumns transformation is in

terms of polynomial arithmetic. In the standard, MixColumns is

defined by considering each column of State as a four-term

polynomial with coefficients in GF(28). Each column is multiplied

modulo (x4 + 1) by the fixed polynomial a(x), given by:

a(x) = {03}x3 + {01}x2 + {01}x + {02} (6)

This expression will not be applied in this article, but it was

presented here because it actually represents the finite field for

GF(28), that is, in polynomial form as indicated in Formula (6).

As noted, the initial state of MixColumn is heavily modified with

the finite field transformation GF(28) giving the AES algorithm the

nonlinearity to make it even more secure against linear and

differential cryptanalysis attacks.

54

Revista de Sistemas e Computação, Salvador, v. 15, n. 2, p. 50-54, mai/ago 2025

https://revistas.unifacs.br/index.php/rsc

6. CONCLUSION
The present study aimed to elucidate, in a detailed and systematic

manner, the functioning of the MixColumns operation in the

Advanced Encryption Standard (AES) algorithm. To achieve this

purpose, a bibliographical and theoretical investigation was

conducted, grounded in the mathematical framework of finite fields

(GF(2⁸)) and matrix algebra. This methodological approach

enabled a rigorous reconstruction of the MixColumns procedure,

supplemented by a fully worked numerical example that illustrates

each computational step involved in the transformation.

The results obtained demonstrate the complete execution of the

MixColumns operation, encompassing the conversion between

hexadecimal, binary, and polynomial representations, as well as the

successive applications of finite field arithmetic that yield the final

state matrix. Through this systematic exposition, the work provides

a transparent and comprehensive understanding of how diffusion

and nonlinearity are introduced within AES, both of which are

fundamental to the cipher’s resistance against differential and linear

cryptanalysis.

The principal contribution of this study resides in its didactic and

analytical value. By articulating the mathematical underpinnings of

the MixColumns operation in a clear and structured manner, the

research enhances the accessibility of complex cryptographic

concepts and supports the correct implementation of AES in

software and hardware environments. Furthermore, the discussion

reinforces the importance of finite field operations as a cornerstone

of contemporary symmetric cryptography, linking theoretical

abstraction to practical security mechanisms.

Building upon the findings presented herein, several avenues for

further investigation are suggested: (1) a comparative and detailed

study of the remaining AES transformations—SubBytes,

ShiftRows, and AddRoundKey; (2) the exploration of hardware-

optimized architectures for MixColumns to improve performance

and energy efficiency; (3) the examination of modified AES

variants incorporating alternative diffusion matrices or reduced

computational complexity; and (4) the development of educational

frameworks, visualization tools, or simulation environments aimed

at facilitating the teaching and comprehension of finite field–based

cryptographic operations.

7. REFERENCES
[1] AHMED, Eslam Gamal; SHAABAN, Eman; HASHEM,

Mohamed. Ligthweight Mix Columns Implementation for

AES. International Conference on APPLIED

INFORMATICS AND COMMUNICATIONS. 2009.

[2] BALADHAY, Jerico S.; REYES, Edjie M. De Los. AES-128

reduced-round permutation by replacing the MixColumns

function. Indonesian Journal of Electrical Engineering and

Computer Science Vol. 33, No. 3, March 2024, pp.

1641~1652. DOI: https://www.doi.org/10.11591/ijeecs.

v33.i3.pp1641-1652. 2024.

[3] KUMAR, K.J. Jegadish; BALASUBRAMANIAN, R.

Lightweight Mixcolumn Architecture for Advanced

Encryption Standard. International Journal of Computer

Applications (0975 – 8887), Volume 136 – No.11, February,

2016.

[4] NIST – National Institute of Standards and Technology.

Advanced Encryption Standard (AES). Federal Information

Processing Standards Publication. 2023.

[5] RAMESH, Singh Poja e SINGH, Santhosh Kumar.

Improvement of Data Security Using Mixcolumn. Indonesian

Journal of Electrical Engineering and Computer Science.

Vol. 9, No. 2, February 2018, pp. 361~364. ISSN: 2502-

4752, DOI: https://www.doi.org/10.11591/ijeecs.

v9.i2.pp361-364. 2018.

[6] STALLINGS W. Criptografia e Segurança de Redes:

Princípios e Práticas. 7ª Ed, São Paulo, Editora Pearson

Education do Brasil, ISBN: 978-85-430-1450-0, 2017.

[7] TENG, L., LI, H., YIN, S. e SUN, Y. A Modified Advanced

Encryption Standard for Data Security. International Journal

of Network Security, Vol.22, No.1, p.112-117, DOI:

HTTPS://www.doi.org/10.6633/IJNS.202001. 22(1).11.

2020.

[8] THANG, Chien; TRIEU, Tan; TRI, Thanh; NOI, Ha; NAM,

Viet. ENHANCING THE SECURITY OF AES BLOCK

CIPHER BASED ON MODIFIED MIXCOLUMN

TRANSFORMATION. Journal of Computer Science and

Cybernetics, V.40, N.2 (2024), 186–202 DOI no.

https://www.doi.org/10.15625/1813-9663/18058. 2024.

[9] XINTONG, Kit Choy. Understanding AES Mix-Columns

Transformation Calculation. University of Wollongong.

2014.

[10] WANG, Jeng-Jung; CHEN, Yan-Haw; CHEN, Yan-Wen;

LEE, Chong-Dao. DIVERSITY AES IN MIXCOLUMNS

STEP WITH 8×8 CIRCULANT MATRIX. International

Journal of Engineering Technologies and Management

Research, V. 8 N.9, p. 19–35. DOI:

https://www.doi.org/10.29121/ijetmr.v8.i9.2021.1037. 2021.

https://www.doi.org/10.11591/ijeecs
https://www.doi.org/10.11591/ijeecs
https://www.doi.org/10.6633/IJNS.202001
https://www.doi.org/10.15625/1813-9663/18058
https://www.doi.org/10.29121/ijetmr.v8.i9.2021.1037

