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ABSTRACT

The AES symmetric cryptographic algorithm is one of the most
widely used nowadays. Its encryption process is quite complex and
difficult to understand. Among encryption operations, one
particularly is so much complicated to understand: the
MixColumns. The goal of this work is to describe in detail,
including an example, how AES MixColumns works. Thus, a
bibliographical research was carried out to verify what the literature
deals with regarding this subject in order to contribute positively to
this work. As results and conclusion the objective of this article was
reached out, by present all the steps involved in the operation of the
AES algorithm MixColumn, explained each one of them in detail
and even demonstrating a complete example of the state
transformation process, which is the block of input bits of the
process.
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1. INTRODUCTION

The AES symmetric cryptographic algorithm is one of the
most widely used nowadays [7]. It has four basic operations for
encrypting and decrypting data, using a very complex and difficult
cryptographic architecture to understand [5].

Particularly, the MixColumns operation is present in the
encryption function and it is the third and penultimate operation to
be performed. The four operations performed in AES encryption
function are executed in this sequence: SubBytes, ShiftRows,
MixColumns and finally AddRoundKey. MixColumns is a lot of
substitution that uses arithmetic over GF(2%). MixColumns is one
of the most complex and difficult operations to explain and
understand. This was the motivation for carrying out this paper and
unravels how this operation works. In addition, it was created a
complete example of its cryptographic round.

Within this context. this article aims to detail the entire process
of the AES MixColumns operation encryption algorithm and
provides a complete example of this operation, in order to make it
easier to understand and for its future implementation in software.
To this end, this work is then organized as follows: Section 1 deals
with the introduction; literature background is addressed in Section
2; Section 3 presents the methodology applied to the paper; Section
4 deals with the detailed explanation of the MixColumns operation
functioning and finally, Section 5 refers to the conclusion and
indication of future work.
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2. BACKGROUND

Several research literature works are discussed in what follows. The
main goal is to provide the reader with a general state-of-the-art
view of the research theme of this present research.

To make the cloud data stored more secure according to the
characteristics of cloud computing, in [7], the authors studied the
modified data encryption algorithm in cloud technology. First, the
traditional advanced encryption standard AES is analyzed. Then, a
modified advanced encryption standard for data security in cloud
computing is proposed by introducing random disturbance
information to improve data security. Furthermore, the column
mixing operation and key choreography in AES are improved.
Formal security analysis and performance comparisons conducted
by the authors indicate that the proposed solutions simultaneously
ensure attribute privacy and improve decryption efficiency for
outsourced data storage in mobile cloud computing.

Security measures such as data encryption often result in reduced
performance speed. In [2], the authors performed a work to improve
the 128-bit version of AES by replacing the MixColumns function
with a permutation-based approach and decreasing the overall
number of rounds. The evaluation results indicated a substantial
improvement in encryption and decryption speed, with a 76.76%
improvement in encryption time and a 55.46% improvement in
decryption time. Furthermore, the authors report that it is important
to mention that the modifications implemented in the standard AES
did not compromise its security respecting to the avalanche effect
criterion, which for the modified AES is 52.92%, exceeding the
minimum requirement of 50%. Finally, the modified AES
demonstrated a 31.12% increase in throughput for encryption and
a 25.50% increase for decryption when compared to the original
AES, using the sample dataset.

In [9], the authors carried out a study to show how the Mixcolumn
operation works using examples, but beyond the example, it does
not really explain how this AES operation works. In [5], the authors
proposed a technique for the modification of MixColumns using
Very Large Scale Integration (VLSI) system design. The modified
MixColumns transformation improves the performance of the AES
algorithm. In the proposed technique, the door counts in the
MixColumns process have been reduced. When compared to
existing AES encryption and Decryption using MixColumns-based
Xtime multiplication, the proposed optimized MixColumns-based
AES decryption provides better performance.

Block ciphers, particularly Substitution-Permutation Network
(SPN) such as AES, are widely used in contemporary
cryptography. However, they face strong cryptanalysis including
differential, linear and algebraic cryptanalysis. Therefore,
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increasing the security of block ciphers, particularly AES, is an
urgent area of research. In addition to security, the execution cost
of block ciphers is crucial. In [8], the authors conducted a research
work that elucidates how Maximum Distance Separable (MDS)
matrices increase the number of diffusion layer branches in block
ciphers, increasing their security. The authors propose a method to
increase the security of AES by altering its Mixcolumns
transformation using efficient MDS matrices of various sizes.
Furthermore, they created a technique to evaluate the fixed point
coefficients of D(A) and fixed points in the modified AES diffusion
layers. They demonstrated the number of branches of modified
AES diffusion layers with MDS matrices of sizes 8 and 16,
analyzing their security, statistical patterns, and execution speed.
Their discovery indicates a significant improvement in AES
security through their proposed approach.

In [3], the authors modified AES MixColumns based on cellular
automata functions. AES has no compression, but it has good
accessibility compared to other algorithms. The modified AES
hardware implementation provides efficient memory space and
area consumption. Comparative study of architecture Security
analysis as Fast Walsh Transform method is followed to verify the
security in modified AES algorithm. Traditional Mixcolumns and
Cellular Automata-based Mixcolumns architecture is done through
hardware simulation in Xilinx tool, to show the Field-
Programmable Gate Array (FPGA) implementation of AES results
as a lightweight cipher, in terms of memory requirement.

In [1], the authors proposed an implementation of the AES
MixColumns operation where a compact architecture for the AES
MixColumns operation and its inverse with hardware
implementation is presented. The authors show that the design has
a lower gate count than other designs that implement both the
forward and inverse MixColumns operation. Comparisons indicate
that the proposed MixColumns design has less complexity than
previous relevant work in gate size and number of clock cycles.
This compact design can help implement AES for smart cards,
RFID tags, and wireless sensors.

Finally, in [10], the authors presentes in their work an efficient
method to calculate the circulating matrices in the AES
MixColumns transformation to accelerate encryption. Using the
multiplication of 8x8 involutional matrices, 64 multiplications and
56 additions are required in the Mix-Columns transformation. The
authors proposed a method with diversity of 8x8 circulating
matrices and in which only 19 multiplications and 57 additions are
required for both encryption and decryption operations. Therefore,
the 8x8 circulant matrix operation with AES key sizes of 128-bit,
192-bit, and 256-bit is over 33.5%, 33.7%, and 33.9% faster than
using the 4x4 involutory matrix operation (16 multiplications, 12
additions), respectively. The encryption/decryption speed of 8§x8
circulating matrix is over 79% faster than that of 8x8 involutional
matrix operation. Finally, the proposed method for evaluating
matrix multiplication can be made regular, simple and suitable for
software implementations in embedded systems.

3. METHODOLOGY

To construct this work, a bibliographical survey was carried out in
renowned books, articles and websites on the subject to obtain the
necessary information to formulate the knowledge base of this
article core.

This work is heavily dependent on modern mathematical concepts
that are essential to understanding what this article proposes, which

is a complete understanding of how the AES MixColumns
operation works.

The following section is entirely dedicated to these mathematical
concepts that will serve as a basis for understanding the subsequent
sections.

4. PRELIMINARY CONCEPTS

The MixColumns operation makes extensive use of the concept of
finite fields and in this way, what this mathematical knowledge is
and how to use it, in practice, in cryptographic algorithms such as
AES will be presented below. This transformation provides good
diffusion properties in the AES algorithm [3].

Several cryptographic algorithms rely widely on properties of finite
fields, notably the Advanced Encryption Standard (AES) and
elliptic curve cryptography [6]. Other examples include the CMAC
message authentication code, which is an authentication technique
that uses a cipher algorithm such as AES to generate an
authentication code for a message, and the GCM authenticated
encryption scheme, which is an authenticated encryption mode of
operation that combines symmetric encryption with message
authentication, providing an efficient and secure solution for data
encryption and authentication.

Finite fields is a subset of fields, consisting of those fields with a
finite number of elements. These are the classes of fields that are
found in cryptographic algorithms.

The most important class of finite fields, for cryptography,
comprises within 2" elements described as fields of the form
GF(2"). They are used in a wide variety of cryptographic
algorithms. However, before discussing these fields, it is necessary
to analyze the topic of polynomial arithmetic.

The finite field of pn order is usually written GF(p"); GF stands for
Galois field, named after the mathematician who first studied finite
fields. Two special cases are of this purpose interest. For n = 1, is
called finite field GF(p); this finite field has a different structure
from the finite fields with n > 1. For finite fields of GF(p") form,
GF(2") fields are of particular cryptographic interest [6].

For a given prime, p, we define the finite field of order p, GF(p), as
the set Zp of integers {0, 1, ..., p - 1} with the arithmetic operations
modulo p. Note, therefore, that ordinary modular arithmetic is
being used to define the operations on these fields.

Some transformations of the AES algorithms specified in Section
5, each byte in the state array is interpreted as one of the 256
elements of a finite field denoted by GF(2°%) [4].

In addition and multiplication defined in GF(2%), each byte {b7 bs
bs ba b3 b2 b1 bo} is interpreted as a polynomial, denoted by b(x), as
follows:

b(x)=bix"+bexS+bsx>+bax*+b3x3+bax*+bix+bo (D

For example: {10110011} is equivalent to the polynomial: x7 + x5
+x4+x+1.

4.1 Addition in GF(2%)

Addition in this field is the performance of exclusive or (XOR)
operations, which is represented by the symbol .

The elementary operations are:

161=0;10=1;and0H 0=0.
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As examples of this operation, three representations are presented
that are identical and indicate the same results.

X+X2+D) + XT+X) = X'+ X+ X+ X2+ 1 (polinomial)
£00010101} € {10001000} = {10011101} (binary) o)
{15} @ {F8} = {9F} (hexadecimal)

4.2 Multiplication of a word by a fixed Matrix
Algorithms for AES block ciphers can be expressed in terms of
matrix multiplication. In particular, a distinct fixed matrix is
specified for each transformation. For both matrices, each of the 16
entries of the matrix is a byte of a single specified word, denoted
here by [ao,a1,a2,a3] (STALLING, 2017).

In a given input word [bo,b1,b2,bs] for the transformation, the output
word [do,d1,d2,d3] is determined by finite field arithmetic as
follows:

d0 =(a0 * b0YD(a3 * b1)B (a2 * b2)D(al * b3)
d1 =(al » b0)D(a0 » b1)@ (a3 * b2)@D (a2 * b3) 3)
d2 =(a2 » b0YD(al * b1)@ (a0 * b2)@ (a3 * b3)
d3=(a3 » b0YD(a2 * b1)B(al * b2)@(a0 * b3)

These two mathematical operations are used in the AES
MixColumns operation.

5. MIXCOLUMNS OPERATION

MixColumn is equivalent to matrix multiplication of each column
of the state. A fixed matrix is multiplied to each column vector. In
this operation, bytes are taken as polynomials instead of numbers.
The state transformation that takes all the columns in the state and
shuffles their data (independently of each other) to produce new
columns.

Each column of the state matrix is represented as a vector with
coefficients in GF (2%). Thus, this vector is multiplied by a constant
4x4 matrix over GF(2%) as indicated in Figure 2.

Figure 1 presents the AES encryption function, so that it can be
identified in the algorithm where the MixColumns operation is
found in the general context.
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Fig. 1: AES encryption function. Source: [6].

Note in Figure 1 the initial vector of 128 bits is called state, or 4
groups of MixColumns (yellow and green blocks in Figure 1) of 4
words with 8 bits (1 byte) each, which is input to the AES
encryption function and used throughout the process. The
transformation of this vector is also called state. Thus, the
MixColumns operation input is a 128-bit vector originating from
the transformation of the state that came from the previous
operation, ShiftRows.

MixColumns operates with each column individually. Each byte in
a column is mapped into a new value that is a function of all four
bytes in that column. The transformation can be defined by the
following matrix multiplication in state (Figure 2):

2311
1231 ol =
1123 N
I_, 3112
S0.0 | So,1 | 0.2 | 50,3 MixColumns S0.0| 50,1 | 50,2 | S0,3
1.0 [ S1,1| S1.2 [ 513 S0 11 | S1,2 [ 513
$20 | 52,1 | $22 | $23 30/ 521 | 522 | 23
3.0 [ $3,1 | $32| 533 330 | 531 | 532 | 533

Fig. 2: MixColumns Illustration. Source: adapted from [6].

As Figure 2 indicates, the first column of state multiplies the first
row of the constant matrix resulting in the first column of the new
state; the second column of state multiplies the second row of the
constant matrix resulting in the second column of the new state, and
SO on.

Thus, each element in the product matrix is the sum of the products
of the elements in a row and a column. In this case, individual
additions and multiplications are performed in GF(28).

02 03 01 01| son Sox Soo  Sos 500 S04 SO
01 02 03 01| sy 59 %2 55 _ Sto S S12 o Sis 4)
01 01 02 03| s S0 $2 53 shy  8hy sha  shs
03 01 01 02850 851 852 8533 Sho  Shy o Si2 s5s

One way of visualizing this matrix multiplication is presented in
the four equations (5), where s’ represents the output of the 4x4
matrix, which is the new state of the next stage input. Figure 2
illustrates this MixColumns matrix multiplication. Where in the
equations (5) the index j varies according to 0 < j < 4. The
MixColumns transformation on a single state column can be
expressed as indicated in the equation (5).

S0, = (2°SO,j) ® (3’51.j) @ 52, D53
S'l.,i = 50.]@ (2'31.;') @ (3 '52.1) @Slj
S'z.j = So0,j @ S1.j @ (2 ‘Sz_j) @ (3 ‘53.‘1)
53,j = 3 *50,;) D 51, D 52, D (2’53._1)

)

In order to make it easy to understand, an example of this
multiplication of matrices will be presented, which results in the
execution of the equations (5).
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Let the following matrix (4x4) be the input state of MixColumns:

SF 13 46 17
22 2C 19 21
A0 1B 30 09
57 11 FE 20

Adjusting the matrix multiplication to suit the MixColumns
process, where the first matrix is composed of constants and the
second matrix is the state, will look like this:

2 3 1 1 5F 13 46 1 S, S, S, S,
1 2 3 1 7 0 1 3
1 1 2 3 22 2 19 2 = S S, $” $”
31 1|2 C 1 0 1 5
Constants A 1 30 0 S S N N
0 B 9 0 1 2 3
57 11 F 2 S, S, S’ S’
E 0 0 1
State New state

Applying formulas (5) to the first column of the state we have:
S’00=({02} . {5F}) @ ({03} . {22}) © {A0} @ {57}
S’10={5F} @ ({02} . {22}) @ ({03} . {A0}) @ {57}
S20={5F} @ {22} @ ({02} . {A0}) @ ({03} . {57})
S’30=({03} . {5F}) @ {22} @ {A0} @ ({02}.{57})

In S0, transforming the numbers from hexadecimal to binary we
have:

S’00 = ({02} . {5F}) @ ({03} . {22}) ® (A0} @ {57}

S’00 = ({10} {o1011111}) @ ({11} {00100010}) &
{10100000} & {01010111}

S’00={10111110} @ {01100110} & {10100000} D {01010111}
where,

S’00={11010111}, passing to hexadecimal we have: D7
S’00=D7

Calculating for S’1,0 we have:

S*10= {5F} @ ({02} . {22}) @ ({03} . {A0}) ® {57}

In S’1,0 transforming the numbers from hexadecimal to binary we
have:

S0 = {01011111} @ ({10}
{10100000}) @ {01010111}
S’10={01011111} @ {01000100} @ {11100000} @ {01010111}
S’1,0={01001100}, passing to hexadecimal we have: 4C
S’1,0=4C

{00100010}) @ ({11}

Calculating for S’2,0 we have:

S20= {SF} @ 122} @ ({02} . {A0}) ® ({03} . {57})

In S’20 transforming the numbers from hexadecimal to binary we
have:S’20 = {01011111} @ {00100010} & ({10} . {10100000})
@ ({11} . {01010111})

S’20=1{01011111} @ {00100010} € {01000000} D {11110101}
S’20={01001010}, passing to hexadecimal we have: 4A
S’20=4A

Calculating for S’3.0 we have:

§30=({03} . {5F}) ® {22} @ {A0} @ ({02} . {57})

In S’3 transforming the numbers from hexadecimal to binary we
have:

S’30 = ({11} . {01011111}) @ {00100010} & {10100000} D
({10} . {01010111})

S’30=1{00011101} @ {00100010} @ {10100000} D {10101110}
S’3,0={00110001}, passing to hexadecimal we have: 31

S’30=31

Now the output matrix will be updated, looking like this:

D7 S’0,1 S0, S’0,3
5C S’ S’12 S’13
4A S’2.1 S’ S’23
31 S’3.1 S’3p S’33

Calculating for the other columns as indicated for column 1 and
applying the formulas (5) we have the complete matrix below as
the new state for input in the next operation of the AES encryption
algorithm, which is AddRoundKey.

D7 83 09 64
(O3] 8F 1A 6E
4A 04 45 44
31 32 01 29

Another way to characterize the MixColumns transformation is in
terms of polynomial arithmetic. In the standard, MixColumns is
defined by considering each column of State as a four-term
polynomial with coefficients in GF(2%). Each column is multiplied
modulo (x* + 1) by the fixed polynomial a(x), given by:

a(x)={03}x*+ {01}x%+ {01}x + {02} (6)

This expression will not be applied in this article, but it was
presented here because it actually represents the finite field for
GF(2%), that is, in polynomial form as indicated in Formula (6).

As noted, the initial state of MixColumn is heavily modified with
the finite field transformation GF(2®) giving the AES algorithm the
nonlinearity to make it even more secure against linear and
differential cryptanalysis attacks.
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6. CONCLUSION

The present study aimed to elucidate, in a detailed and systematic
manner, the functioning of the MixColumns operation in the
Advanced Encryption Standard (AES) algorithm. To achieve this
purpose, a bibliographical and theoretical investigation was
conducted, grounded in the mathematical framework of finite fields
(GF(2*)) and matrix algebra. This methodological approach
enabled a rigorous reconstruction of the MixColumns procedure,
supplemented by a fully worked numerical example that illustrates
each computational step involved in the transformation.

The results obtained demonstrate the complete execution of the
MixColumns operation, encompassing the conversion between
hexadecimal, binary, and polynomial representations, as well as the
successive applications of finite field arithmetic that yield the final
state matrix. Through this systematic exposition, the work provides
a transparent and comprehensive understanding of how diffusion
and nonlinearity are introduced within AES, both of which are
fundamental to the cipher’s resistance against differential and linear
cryptanalysis.

The principal contribution of this study resides in its didactic and
analytical value. By articulating the mathematical underpinnings of
the MixColumns operation in a clear and structured manner, the
research enhances the accessibility of complex cryptographic
concepts and supports the correct implementation of AES in
software and hardware environments. Furthermore, the discussion
reinforces the importance of finite field operations as a cornerstone
of contemporary symmetric cryptography, linking theoretical
abstraction to practical security mechanisms.

Building upon the findings presented herein, several avenues for
further investigation are suggested: (1) a comparative and detailed
study of the remaining AES transformations—SubBytes,
ShiftRows, and AddRoundKey; (2) the exploration of hardware-
optimized architectures for MixColumns to improve performance
and energy efficiency; (3) the examination of modified AES
variants incorporating alternative diffusion matrices or reduced
computational complexity; and (4) the development of educational
frameworks, visualization tools, or simulation environments aimed
at facilitating the teaching and comprehension of finite field—based
cryptographic operations.
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