
27

Revista de Sistemas e Computação, Salvador, v. 15, n. 2, p. 27-31, mai/ago 2025

https://revistas.unifacs.br/index.php/rsc

Comparison of Consensus Algorithms in Blockchain for
the Implementation of Central Bank Digital Currencies
Carlos G. V. N. Soares

Department of Electrical Engineering
University of Brasília (UnB)

Brasília, Federal District, Brazil

carlosgabriel1999@gmail.com

Carlo K. da S. Rodrigues
Center for Mathematics, Computing

and Cognition
Federal University of ABC (UFABC)

Santo André, São Paulo, Brazil

carlo.kleber@ufabc.edu.br

William F. Giozza
Department of Electrical Engineering
University of Brasília (UnB)Brasília,

Federal District, Brazil

giozza@unb.br

ABSTRACT

The choice of the consensus mechanism in the implementation of a

Central Bank Digital Currency (CBDC) with Blockchain

technology is critical, as it impacts the efficiency, scalability, and

security of the system. In this context, this work analyzes three

consensus algorithms: Practical Byzantine Fault Tolerance (pBFT),

HotStuff, and Raft. Simulations are performed in the NS-3

environment to measure consensus times in networks with different

numbers of nodes, message sizes, and latencies. The results show

the superiority of the Raft algorithm, as it is the most scalable and

optimizes consensus time by up to 134% and 277% compared to

the pBFT and HotStuff algorithms, respectively. The paper

concludes with a discussion of findings and suggestions for future

work.

CCS Concepts

Computer systems organization → Distributed ledgers; Consensus

mechanisms; Applied computing → Financial applications;

Software and its engineering → Performance prediction and

evaluation.

Keywords

Central Bank Digital Currency (CBDC); Distributed Ledger

Technology (DLT); Consensus Algorithms; Blockchain;

Performance Analysis.

1. INTRODUCTION
 Central Bank Digital Currencies (CBDCs) are digital

representations of fiat money issued and regulated by monetary

authorities, with projects underway in Brazil and other countries

[22]. Implemented on Distributed Ledger Technologies (DLT) such

as Blockchain [27], CBDCs aim to enhance the security and

transparency of the financial system through asset tokenization [4].

DLT ensures data immutability [15] in private, permissioned

networks, which differentiates them from public cryptocurrencies

and guarantees regulatory oversight by the central bank [30].

 This centralized management allows for greater auditability and

the application of monetary policies [26], but integration with

existing financial systems critically depends on the chosen

Blockchain platform (e.g., Hyperledger, Corda) [3, 25]. Within

these platforms, the choice of consensus algorithm is a decisive

factor, as it directly impacts the scalability, efficiency, and security

of the entire operation[19, 21].

 Therefore, this paper compares three consensus algorithms as

candidates for application in CBDCs: pBFT (Practical Byzantine

Fault Tolerance) and HotStuff, which are Byzantine fault-tolerant,

and Raft, which is crash fault-tolerant. To this end, following a

literature review, simulations are conducted in the NS-3

environment to measure the consensus time under different

network conditions (number of nodes, message size, and latency).

The analysis of variants such as IBFT (Istanbul Byzantine Fault

Tolerance) [20] and QBFT (Quorum Byzantine Fault Tolerance)

[24], as well as an in-depth study of systemic security, are left as

future work. The contribution of this research is the evaluation of

the time to reach consensus (efficiency) and the impact of the

number of nodes (scalability) on these algorithms, thereby

advancing the body of knowledge for CBDC development.

 The remainder of this paper is organized as follows. Related work

is discussed in Section 2. Section 3 reviews the consensus

algorithms analyzed in this research. Section 4 compares these

consensus algorithms, including numerical results and their

corresponding analyses. Finally, Section 5 presents the conclusions

and suggestions for future work.

2. RELATED WORK
 Subsection 2.1 presents three key papers that address consensus

algorithms applied to the implementation of CBDC systems, while

Subsection 2.2 discusses five papers comparing consensus

algorithms, highlighting potential candidates also suitable for use

in Blockchain-based CBDC implementations.

2.1 Consensus Algorithms applied to CBDCs
 In [10] conduct an analysis of the components of a CBDC,

presenting the fundamental elements of its structure: types of DLT,

smart contracts, virtual machines, and consensus algorithms.

Specifically regarding consensus algorithms, the suitability of the

following for CBDC applications is discussed: PoW (Proof of

Work), PoS (Proof of Stake), DAG (Directed Acyclic Graph),

DPoS (Delegated Proof of Stake), PoA (Proof of Authority), pBFT,

and HotStuff. The study concludes that the pBFT and HotStuff

algorithms, both from the BFT category, are the most appropriate

for CBDCs. This recommendation is based on the ability of these

algorithms to achieve consensus even in the presence of faults in

processing nodes, a characteristic not found in the other evaluated

algorithms, making them robust and reliable.

 Focusing on security, [5] performs a literature review on available

offline payment solutions for CBDCs. Their study establishes

essential criteria for network security, such as double-spending

prevention, unforgeability, non-repudiation, and verifiability.

Based on these parameters, the authors conclude that PoW type

algorithms are not suitable for such an application. However, the

study does not indicate which algorithms might be more

appropriate and points to a lack of clear technical guidelines on

which algorithms would be most suitable.

 A different perspective is offered by [16], who investigate the

environmental impact and energy consumption of CBDCs. Their

28

Revista de Sistemas e Computação, Salvador, v. 15, n. 2, p. 27-31, mai/ago 2025

https://revistas.unifacs.br/index.php/rsc

study compares the use of CBDCs with traditional payment

methods, as well as analyzing Blockchain-based payment systems.

The comparison indicates that current financial methods have the

lowest energy consumption, followed by the Raft algorithm, then

the PoA and pBFT algorithms, and lastly, PoW. Furthermore, the

authors highlight that the choice of consensus algorithm in a system

that adopts CBDCs has a significant impact not only on energy

consumption but also on the overall functioning of the system. For

example, the cost associated with the pBFT consensus algorithm

can increase exponentially with the number of participants, while

at the same time, limiting the number of participants can

compromise the system’s security.

2.2 Comparison of Consensus Algorithms
 [29] compares the PoW, PoS, DPoS, pBFT, and Ripple consensus

algorithms through simulations. Their evaluation focuses on

requirements such as fault tolerance, energy efficiency, and

scalability, and also identifies the type of network to which each

algorithm is applied. Ripple and pBFT are applicable to

permissioned networks, while the others are used in public

networks. PoW exhibits the highest scalability, followed by PoS,

DPoS, pBFT, and Ripple. Regarding energy efficiency, Ripple and

pBFT have the best performance, followed by DPoS, PoS, and

PoW. As for fault tolerance, PoW, PoS, and DPoS are the most

robust, followed by pBFT and Ripple.

 A performance comparison between IBFT, Clique, PoW, and Raft

is presented by [1]. The algorithms are compared in terms of

latency, throughput, and failure rate using a system called UBETA

for P2P (Peer-to-Peer) energy trading. The IBFT algorithm has the

lowest latency in most test cases, followed by the Raft, PoW, and

Clique algorithms. Regarding throughput, IBFT and Raft showed

similar values, followed by PoW and Clique. In addition, the IBFT

algorithm exhibits the lowest failure rate as the number of nodes

increases, followed by Clique, PoW, and Raft.

 The work by [18] evaluates the IBFT, QBFT, Raft, and Clique

algorithms on the GoQuorum platform using the Hyperledger

Caliper tool. The analysis included transactions per second,

transaction latency, and RAM consumption across both private and

public networks with varying numbers of nodes. In all tests, the

Raft algorithm was the best performer. Following Raft, the IBFT

and QBFT algorithms performed similarly, while the Clique

algorithm had the worst performance among them across all

metrics.

 Focusing on the Hyperledger Besu platform, [6] analyzes the

Clique, IBFT 2.0, and QBFT consensus algorithms. The analyzed

metrics include transaction rates, latency, resource consumption,

and scalability. The results indicate that Clique and QBFT exhibit

similar throughput rates, with IBFT 2.0 having the lowest rate

among them. The same applies to latency: Clique and QBFT show

similar results, while IBFT 2.0 has the highest latency. Regarding

scalability, QBFT demonstrates the greatest scalability, with IBFT

2.0 and Clique following.

 Using the NS-3 simulator, [11] evaluates Paxos, Raft, and pBFT

by varying the number of nodes, message size, and delays. Their

findings demonstrate that pBFT is superior in both robustness and

consensus speed, consistently outperforming Raft and Paxos under

the tested conditions.

 It can be concluded that PoW and PoS type algorithms are not

suitable for CBDCs, as they do not feature a structure centralized

under a single entity. In contrast, BFT based algorithms, such as

pBFT and HotStuff, are more indicated for CBDCs, offering

greater efficiency and scalability. Although the Ripple and Raft

algorithms have also shown good performance, Ripple’s

proprietary nature limits its adoption in financial systems. Hence,

the contribution of this research is, specifically, to perform a novel

comparison of potential candidate algorithms (i.e., pBFT, HotStuff,

and Raft) for use in Blockchain based CBDCs. It should be noted

that the available literature on the topic of this research is still

incipient and therefore characterized by a limited number of works.

3. EVALUATED ALGORITHMS
 This section provides an overview of the following three

algorithms: pBFT, HotStuff, and Raft. These three algorithms were

chosen for analysis in this research because, according to the

literature (see Section 2), they exhibit good overall performance

and lack the more critical limitations found in other algorithms,

such as the requirement for complete decentralization.

Furthermore, this work aims to complement previous studies by

specifically comparing pBFT, HotStuff, and Raft in simulations

within the context of CBDCs, thereby identifying a gap in scientific

literature.

3.1 pBFT
 The pBFT algorithm is one of the most traditional consensus

mechanisms, capable of tolerating up to f faults in a system

composed of n = 3f + 1 replicas and requiring a fully interconnected

network. The process operates in three phases: it begins with the

leader proposing a new block (Pre-prepare); continues as other

validators verify and broadcast their acceptance (Prepare); and

concludes with the confirmation of the block (Commit). To

advance between phases and finalize the block, an agreement from

at least two-thirds of the network is required.

3.2 Raft
 The Raft algorithm, a Crash Fault Tolerant (CFT) type, was

designed for simple implementation, using a leader-follower model

to coordinate log replication [7, 12, 23]). Its operation is based on

the election of a leader through voting, who maintains authority by

sending periodic heartbeats to follower nodes; the leader’s failure

triggers a new election. This leader is solely responsible for

replicating the command logs that update the followers’ state

machines, overwriting divergent logs to maintain consistency.

3.3 HotStuff
 The HotStuff algorithm [28] represents an evolution of BFT type

consensus mechanisms, designed to optimize communication with

linear message complexity and without the need for full

interconnection between nodes. Its consensus mechanism operates

in three voting phases. In the Prepare phase, the leader proposes a

new block, and validators respond with votes. Next, in the Pre-

commit phase, the leader aggregates the votes into a Quorum

Certificate (QC) upon receiving (n – f) messages, where n is the

total number of validators and f is the maximum number of faults

tolerated. This QC is then broadcast to the network. Finally, in the

Commit phase, validators cast their final votes, which are again

aggregated by the leader into a new QC to finalize the consensus.

4. Performance Evaluation

4.1 Simulation Setup

29

Revista de Sistemas e Computação, Salvador, v. 15, n. 2, p. 27-31, mai/ago 2025

https://revistas.unifacs.br/index.php/rsc

 The experiments are modeled in the NS-3 environment, an open-

source network simulator that is widely adopted by the academic

community and allows for the modeling of various protocols and

algorithms. In the context of CBDCs, it enables the simulation of

Blockchain networks with different consensus algorithms[2, 14].

The algorithms were implemented using C++, and the simulations

were conducted by adapting a pre-existing simulator. The

implementation code for each algorithm is available on GitHub.

4.2 Experimental Setup
Table 1. Parameters Used in the Simulation

Parameters Values

Nodes (n) 8, 16, 32, 64

Size (bytes) 256, 1024

Latency (ms) 10, 100

 The performance metric evaluated in the experiments is the

consensus time, i.e., the average time required for the network

nodes to validate transactions. The experiments were conducted by

varying three independent variables: the number of participating

nodes in the network (n), the size of the transmitted messages (in

bytes), and the communication latency between nodes (in ms), as

shown in Table 1.

 High-performance networks were simulated with a latency of

10ms, while scenarios more representative of real-world

implementations were modeled with a latency of 100ms [9]. The

selected message sizes of 256 bytes and 1024 bytes [8, 13]

represent approximations of transactions in public Blockchain and

CBDC networks, respectively. The simulations were conducted on

network topologies with 8, 16, 32, and 64 nodes. The selection of

these values is based on the permissioned architecture of CBDC

networks, which are generally composed of a restricted set of

validator nodes, such as the Central Bank and government-

designated financial institutions [17].

Table 2. Computational Environment Used in the Simulation

Resource Specification

Operating System Ubuntu 24.04.1 LTS

Processor Intel® Core™ i9-11900H

Memory 12GB DDR4 3200MHz

Simulator NS-3.32

To ensure the statistical validity and reliability of the results, the

average values reported in the experiments are obtained from 30

executions (runs). This approach allowed for the analysis of the

data with a 95% confidence level, minimizing the impact of random

fluctuations and providing a robust basis for the inferences. Finally,

the computational resources used to perform the CBDC network

simulation are detailed in Table 2.

4.3 Network Topology
NS-3 offers complete flexibility in the topological configuration of

the network, allowing for arbitrary connections between system

nodes. In the simulations performed, a fully interconnected network

topology was implemented to ensure a consistent comparison

between the algorithms. This configuration was adopted as it is a

fundamental requirement of the pBFT algorithm, although it may

potentially impact the performance of the other analyzed

algorithms. In this topology, considering n nodes, the total number

of connections is determined by the combination C(n, 2),

mathematically expressed as:

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠  =  𝑛 ⋅
(𝑛 − 1)

2

Thus, for the values of n indicated in Table 2, a total of 28, 120,

496, and 2016 connections are obtained for 8, 16, 32, and 64 nodes,

respectively.

4.4 Analysis of Results
This subsection presents the experimental results obtained through

simulations conducted in the NS-3 environment, focusing on the

comparative analysis of the pBFT, Raft, and HotStuff consensus

algorithms. The performance metric, as previously mentioned, is

the consensus time, i.e., the time required to establish consensus

among the participating network nodes. The data are represented

on a logarithmic scale to provide an appropriate visualization of the

variations observed in the experimental results.

4.4.1 Network with 10ms Latency

Figure 1: Consensus time for 10ms latency and 256-byte

messages

Figure 2: Consensus time for 10ms latency and 1024-byte

messages

 In the scenario with 256-byte messages, depicted in Figure 1, the

RAFT protocol exhibits the best performance in configurations of

8, 16, and 32 nodes, with the lowest response times (24ms, 55ms,

30

Revista de Sistemas e Computação, Salvador, v. 15, n. 2, p. 27-31, mai/ago 2025

https://revistas.unifacs.br/index.php/rsc

and 184ms, respectively). The HotStuff protocol, although starting

with performance comparable to pBFT at 8 nodes (both at 50ms),

shows the most pronounced performance degradation as the

network scales, reaching the highest value at 64 nodes (3065ms).

In contrast, pBFT, despite being surpassed by RAFT in smaller

networks, demonstrates better scalability, taking the lead as the

most efficient protocol in the 64-node configuration (491ms).

 In the configuration involving 1024-byte messages, detailed in

Figure 2, the RAFT protocol shows consistent superiority,

delivering the best performance across all tested node

configurations (8, 16, 32, and 64). pBFT, on the other hand, starts

as the least efficient protocol in an 8-node network and, although it

scales better than HotStuff, it remains consistently behind RAFT.

The HotStuff algorithm again demonstrates the poorest scalability,

starting with intermediate performance at 8 nodes but recording the

longest response times in scenarios with a higher number of nodes.

 In conclusion, Raft proved to be the most efficient protocol, a

direct consequence of its leader-based model with linear

communication (O(n)), which remained robust to increases in both

node count and load. pBFT, in turn, showed mixed behavior; its

high quadratic communication complexity (O(n^2)), required for

Byzantine fault tolerance, explains its loss of efficiency as the

network and message sizes grew. Finally, HotStuff exhibited the

lowest scalability, indicating that despite its theoretically linear

architecture, its performance was severely compromised as the

network grew; it is theorized that this behavior is due to the

computational cost of validating Quorum Certificate.

4.4.2 Network with 100ms Latency

Figure 3: Consensus time for 100ms latency and 256-byte

messages

Figure 4: Consensus time for 100ms latency and 1024-byte

messages

 In the scenario with 100ms latency and 256-byte messages,

depicted in Figure 3, the pBFT protocol demonstrates notable

performance superiority across all node configurations (8, 16, 32,

and 64). Its performance scales more efficiently compared to the

other algorithms, maintaining the lowest response times. The Raft

and HotStuff protocols show similar initial performance at 8 nodes,

but both exhibit a significantly more pronounced degradation as the

network grows, becoming slower than pBFT.

 In the configuration with larger, 1024-byte messages, shown in

Figure 4 with the same 100ms latency, HotStuff starts with the best

performance in an 8-node network, but its scalability proves

inferior, ending as the slowest protocol at 64 nodes. Raft, in turn,

takes the lead in 16 and 64-node networks. pBFT, despite a less

impressive start, improves its performance to tie with Raft in the

32-node configuration but is once again surpassed in the larger

network.

 Compared to the 10ms latency scenario, the pBFT algorithm

demonstrated consistent performance, remaining efficient under

both 10ms and 100ms latencies for both data packet sizes, with the

exception noted in the 64-node topology with 1024-byte messages.

In contrast, the Raft protocol proved to be highly sensitive to the

increase in latency, suffering from performance degradation.

HotStuff, meanwhile, exhibited the lowest scalability, showing the

most pronounced performance deterioration among the evaluated

algorithms in response to increased latency, regardless of the

network configuration.

4.5 Critical evaluation
 From the analysis of the numerical results presented individually

in the previous subsections, the following general findings can be

made.

 a) The performance of the Raft algorithm is characterized as

follows. In low-latency scenarios, it proved to be the most efficient

and robust protocol, consistently delivering the best performance

due to its linear communication model. In high-latency scenarios,

its performance drops significantly, revealing its high sensitivity to

increased network latency. Therefore, the Raft algorithm is the

ideal choice for networks with guaranteed low latency, but its

performance is considerably hindered in less ideal network

environments.

 b) The performance of the pBFT algorithm is characterized as

follows. In low-latency scenarios, its behavior is mixed, often being

surpassed by Raft in smaller networks but demonstrating better

scalability and potentially taking the lead in larger network

configurations. In high-latency scenarios, it demonstrates

consistency, which is the most efficient algorithm in most tested

configurations. Therefore, the pBFT algorithm stands out for its

robustness and consistent performance, being particularly effective

and superior to the others in high-latency environments.

 c) The performance of the HotStuff algorithm is characterized as

follows. In low-latency scenarios, although its initial performance

may be comparable, it exhibits the poorest scalability and the most

pronounced performance degradation as the network grows. In

high-latency scenarios, this trend intensifies, and despite good

initial performance in very small networks, its scalability proves

inferior, ending as the slowest protocol in larger configurations.

Therefore, the HotStuff algorithm demonstrated the lowest

scalability in the evaluated scenarios, with its performance being

severely compromised by increases in network size and latency.

31

Revista de Sistemas e Computação, Salvador, v. 15, n. 2, p. 27-31, mai/ago 2025

https://revistas.unifacs.br/index.php/rsc

 In summary, considering the previous discussion, it is concluded

that in the context of CBDCs where low latency is expected, the

Raft algorithm is the most suitable choice.

5. Final Conclusions and Future Work

 This work conducted a comparative analysis of three consensus

algorithms: pBFT, HotStuff, and Raft, evaluating their applicability

for the implementation of Blockchain-based CBDCs. The analysis

methodology involved simulations in the NS-3 environment to

measure the consensus time under different network

configurations, considering message size, latency, and the number

of nodes. In general, the experimental results showed that the Raft

algorithm is the most efficient and scalable for implementing

CBDCs, followed by pBFT and HotStuff. Furthermore, it was also

noted that pBFT’s performance was significantly affected by

message size, whereas HotStuff was minimally impacted.

 As future work, we suggest the following directions: (i) analyzing

the impact of the connection topology between network nodes on

efficiency, scalability, and systemic security; (ii) comparing other

consensus algorithms, as specified in Section 3; and (iii) creating

new algorithms to optimize the performance of existing ones.

6. REFERENCES
[1] Abdella, J. et al. An Architecture and Performance

Evaluation of Blockchain-Based Peer-to-Peer Energy

Trading. PP, 1.

https://doi.org/10.1109/TSG.2021.3056147.

[2] Campanile, L. et al. Computer network simulation with

ns-3: A systematic literature review. 9, 2, 272.

[3] Capocasale, V. et al. Comparative analysis of

permissioned blockchain frameworks for industrial

applications. 4, 1, 100113.

https://doi.org/https://doi.org/10.1016/j.bcra.2022.100113

.

[4] Chen, Y. Blockchain tokens and the potential

democratization of entrepreneurship and innovation. 61, 4,

567–575.

[5] Chu, Y. et al. Review of offline payment function of

CBDC considering security requirements. 12, 9, 4488.

[6] Fan, C. et al. Performance Analysis of Hyperledger Besu

in Private Blockchain. 2022 IEEE International

Conference on Decentralized Applications and

Infrastructures (DAPPS) 64–73.

[7] Fu, W. et al. An improved blockchain consensus algorithm

based on raft. 46, 9, 8137–8149.

[8] Gelashvili, R. et al. Jolteon and ditto: Network-adaptive

efficient consensus with asynchronous fallback.

International conference on financial cryptography and

data security 296–315.

[9] Gueta, G.G. et al. SBFT: A scalable and decentralized

trust infrastructure. 2019 49th Annual IEEE/IFIP

international conference on dependable systems and

networks (DSN) 568–580.

[10] Guo, S. et al. DLT Options for CBDC. 13, 1, 57–88.

https://doi.org/doi:10.2478/jcbtp-2024-0004.

[11] Hidayat, S.A. et al. Performance comparison and analysis

of paxos, raft and pbft using ns3. 2022 IEEE International

Conference on Internet of Things and Intelligence Systems

(IoTaIS) 304–310.

[12] Huang, D. et al. Performance analysis of the raft consensus

algorithm for private blockchains. 50, 1, 172–181.

[13] Islam, M.M. A privacy-preserving transparent central

bank digital currency system based on consortium

blockchain and unspent transaction outputs. 16, 4, 2372–

2386.

[14] Jin, K. et al. Distributed node consensus protocol:

Analysis, evaluation and performance. 2016 IEEE

International Conference on Communications (ICC) 1–6.

[15] Johar, S. et al. Research and Applied Perspective to

Blockchain Technology: A Comprehensive Survey.

[16] Lee, S. and Park, J. Environmental implications of a

central bank digital currency (CBDC).

[17] Li, D. et al. Design principles and best practices of central

bank digital currency. 17, 5, 411.

[18] Lopes, J. Exploring consensus algorithms in Quorum.

[19] Mingxiao, D. et al. A review on consensus algorithm of

blockchain. 2017 IEEE international conference on

systems, man, and cybernetics (SMC) 2567–2572.

[20] Moniz, H. The Istanbul BFT consensus algorithm.

[21] Nguyen, G.-T. and Kim, K. A survey about consensus

algorithms used in blockchain. 14, 1.

[22] Nóbrega, L.P. et al. The Efficiency of the Brazilian

Payment System as per the Deployment of the Digital

Currency based on DLT: Challenges and Opportunities.

13, 2.

[23] Ongaro, D. and Ousterhout, J. In search of an

understandable consensus algorithm. 2014 USENIX

annual technical conference (USENIX ATC 14) 305–319.

[24] Tkachuk, R.-V. et al. 2023. On the Performance of

Consensus Mechanisms in Privacy-Enabled Decentralized

Peer-to-Peer Renewable Energy Marketplace. 2023 26th

Conference on Innovation in Clouds, Internet and

Networks and Workshops (ICIN) (2023), 179–186.

[25] Ucbas, Y. et al. Performance and Scalability Analysis of

Ethereum and Hyperledger Fabric. 11, 67156–67167.

https://doi.org/10.1109/ACCESS.2023.3291618.

[26] Wang, G. and Hausken, K. A game between central banks

and households involving central bank digital currencies,

other digital currencies and negative intere st

rates. 10, 1, 2114178.

[27] Ward, O. and Rochemont, S. Understanding central bank

digital currencies (CBDC). 13, 2, 263–268.

[28] Yin, M. et al. HotStuff: BFT consensus with linearity and

responsiveness. Proceedings of the 2019 ACM Symposium

on Principles of Distributed Computing 347–356.

[29] Zhang, S. and Lee, J.-H. Analysis of the main consensus

protocols of blockchain. 6, 2, 93–97.

[30] Zheng, Z. et al. Blockchain challenges and opportunities:

A survey. 14, 4, 352–375.

https://doi.org/10.1109/TSG.2021.3056147
https://doi.org/https:/doi.org/10.1016/j.bcra.2022.100113
https://doi.org/https:/doi.org/10.1016/j.bcra.2022.100113
https://doi.org/doi:10.2478/jcbtp-2024-0004
https://doi.org/10.1109/ACCESS.2023.3291618

