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ABSTRACT

The choice of the consensus mechanism in the implementation of a
Central Bank Digital Currency (CBDC) with Blockchain
technology is critical, as it impacts the efficiency, scalability, and
security of the system. In this context, this work analyzes three
consensus algorithms: Practical Byzantine Fault Tolerance (pBFT),
HotStuff, and Raft. Simulations are performed in the = NS-3
environment to measure consensus times in networks with different
numbers of nodes, message sizes, and latencies. The results show
the superiority of the Raft algorithm, as it is the most scalable and
optimizes consensus time by up to 134% and 277% compared to
the pBFT and HotStuff algorithms, respectively. The paper
concludes with a discussion of findings and suggestions for future
work.

CCS Concepts

Computer systems organization — Distributed ledgers; Consensus
mechanisms; Applied computing — Financial applications;
Software and its engineering — Performance prediction and
evaluation.

Keywords
Central Bank Digital Currency (CBDC); Distributed Ledger
Technology (DLT); Consensus Algorithms; Blockchain;

Performance Analysis.

1. INTRODUCTION

Central Bank Digital Currencies (CBDCs) are digital
representations of fiat money issued and regulated by monetary
authorities, with projects underway in Brazil and other  countries
[22]. Implemented on Distributed Ledger Technologies (DLT) such
as Blockchain [27], CBDCs aim to enhance the security and
transparency of the financial system through asset tokenization [4].
DLT ensures data immutability [15] in private, permissioned
networks, which differentiates them from public cryptocurrencies
and guarantees regulatory oversight by the central bank [30].

This centralized management allows for greater auditability and
the application of monetary policies [26], but integration with
existing financial systems critically depends on the chosen
Blockchain platform (e.g., Hyperledger, Corda) [3, 25]. Within
these platforms, the choice of consensus algorithm is a decisive
factor, as it directly impacts the scalability, efficiency, and security
of the entire operation[19, 21].

Therefore, this paper compares three consensus algorithms as
candidates for application in CBDCs: pBFT (Practical Byzantine
Fault Tolerance) and HotStuff, which are Byzantine fault-tolerant,
and Raft, which is crash fault-tolerant. To this end, following a
literature review, simulations are conducted in the NS-3

environment to measure the consensus time under different
network conditions (number of nodes, message size, and latency).
The analysis of variants such as IBFT (Istanbul Byzantine Fault
Tolerance) [20] and QBFT (Quorum Byzantine Fault Tolerance)
[24], as well as an in-depth study of systemic security, are left as
future work. The contribution of this research is the evaluation of
the time to reach consensus (efficiency) and the impact of the
number of nodes (scalability) on these algorithms, thereby
advancing the body of knowledge for CBDC development.

The remainder of this paper is organized as follows. Related work
is discussed in Section 2. Section 3 reviews the consensus
algorithms analyzed in this research. Section 4 compares these
consensus algorithms, including numerical results and their
corresponding analyses. Finally, Section 5 presents the conclusions
and suggestions for future work.

2. RELATED WORK

Subsection 2.1 presents three key papers that address consensus
algorithms applied to the implementation of CBDC systems, while
Subsection 2.2 discusses five papers comparing consensus
algorithms, highlighting potential candidates also suitable for use
in Blockchain-based CBDC implementations.

2.1 Consensus Algorithms applied to CBDCs

In [10] conduct an analysis of the components of a CBDC,
presenting the fundamental elements of its structure: types of DLT,
smart contracts, virtual machines, and consensus algorithms.
Specifically regarding consensus algorithms, the suitability of the
following for CBDC applications is discussed: PoW (Proof of
Work), PoS (Proof of Stake), DAG (Directed Acyclic Graph),
DPoS (Delegated Proof of Stake), PoA (Proof of Authority), pBFT,
and HotStuff. The study concludes that the pBFT and HotStuff
algorithms, both from the BFT category, are the most appropriate
for CBDCs. This recommendation is based on the ability of these
algorithms to achieve consensus even in the presence of faults in
processing nodes, a characteristic not found in the other evaluated
algorithms, making them robust and reliable.

Focusing on security, [5] performs a literature review on available

offline payment solutions for CBDCs. Their study establishes
essential criteria for network security, such as double-spending
prevention, unforgeability, non-repudiation, and verifiability.
Based on these parameters, the authors conclude that PoW type
algorithms are not suitable for such an application. However, the
study does not indicate which algorithms might be more
appropriate and points to a lack of clear technical guidelines on
which algorithms would be most suitable.

A different perspective is offered by [16], who investigate the
environmental impact and energy consumption of CBDCs. Their
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study compares the use of CBDCs with traditional payment
methods, as well as analyzing Blockchain-based payment systems.
The comparison indicates that current financial methods have the
lowest energy consumption, followed by the Raft algorithm, then
the PoA and pBFT algorithms, and lastly, PoW. Furthermore, the
authors highlight that the choice of consensus algorithm in a system
that adopts CBDCs has a significant impact not only on energy
consumption but also on the overall functioning of the system. For
example, the cost associated with the pBFT consensus algorithm
can increase exponentially with the number of participants, while
at the same time, limiting the number of participants can
compromise the system’s security.

2.2 Comparison of Consensus Algorithms

[29] compares the PoW, PoS, DPoS, pBFT, and Ripple consensus
algorithms through simulations. Their evaluation focuses on
requirements such as fault tolerance, energy efficiency, and
scalability, and also identifies the type of network to which each
algorithm is applied. Ripple and pBFT are applicable to
permissioned networks, while the others are used in public
networks. PoW exhibits the highest scalability, followed by PoS,
DPoS, pBFT, and Ripple. Regarding energy efficiency, Ripple and
pBFT have the best performance, followed by DPoS, PoS, and
PoW. As for fault tolerance, PoW, PoS, and DPoS are the most
robust, followed by pBFT and Ripple.

A performance comparison between IBFT, Clique, PoW, and Raft

is presented by [1]. The algorithms are compared in terms of
latency, throughput, and failure rate using a system called UBETA
for P2P (Peer-to-Peer) energy trading. The IBFT algorithm has the
lowest latency in most test cases, followed by the Raft, PoW, and
Clique algorithms. Regarding throughput, IBFT and Raft showed
similar values, followed by PoW and Clique. In addition, the IBFT
algorithm exhibits the lowest failure rate as the number of nodes
increases, followed by Clique, PoW, and Raft.

The work by [18] evaluates the IBFT, QBFT, Raft, and Clique
algorithms on the GoQuorum platform using the Hyperledger
Caliper tool. The analysis included transactions per second,
transaction latency, and RAM consumption across both private and
public networks with varying numbers of nodes. In all tests, the
Raft algorithm was the best performer. Following Raft, the IBFT
and QBFT algorithms performed similarly, while the Clique
algorithm had the worst performance among them across all
metrics.

Focusing on the Hyperledger Besu platform, [6] analyzes the
Clique, IBFT 2.0, and QBFT consensus algorithms. The analyzed
metrics include transaction rates, latency, resource consumption,
and scalability. The results indicate that Clique and QBFT exhibit
similar throughput rates, with IBFT 2.0 having the lowest rate
among them. The same applies to latency: Clique and QBFT show
similar results, while IBFT 2.0 has the highest latency. Regarding
scalability, QBFT demonstrates the greatest scalability, with IBFT
2.0 and Clique following.

Using the NS-3 simulator, [11] evaluates Paxos, Raft, and pBFT
by varying the number of nodes, message size, and delays. Their
findings demonstrate that pBFT is superior in both robustness and
consensus speed, consistently outperforming Raft and Paxos under
the tested conditions.

It can be concluded that PoW and PoS type algorithms are not
suitable for CBDCs, as they do not feature a structure centralized
under a single entity. In contrast, BFT based algorithms, such as

pBFT and HotStuff, are more indicated for CBDCs, offering
greater efficiency and scalability. Although the Ripple and Raft
algorithms have also shown good performance, Ripple’s
proprietary nature limits its adoption in financial systems. Hence,
the contribution of this research is, specifically, to perform a novel
comparison of potential candidate algorithms (i.e., pBFT, HotStuff,
and Raft) for use in Blockchain based CBDCs. It should be noted
that the available literature on the topic of this research is still
incipient and therefore characterized by a limited number of works.

3. EVALUATED ALGORITHMS

This section provides an overview of the following three
algorithms: pBFT, HotStuff, and Raft. These three algorithms were
chosen for analysis in this research because, according to the
literature (see Section 2), they exhibit good overall performance
and lack the more critical limitations found in other algorithms,
such as the requirement for complete decentralization.
Furthermore, this work aims to complement previous studies by
specifically comparing pBFT, HotStuff, and Raft in simulations
within the context of CBDCs, thereby identifying a gap in scientific
literature.

3.1 pBFT

The pBFT algorithm is one of the most traditional consensus
mechanisms, capable of tolerating up to f faults in a system
composed of n = 3f+ 1 replicas and requiring a fully interconnected
network. The process operates in three phases: it begins with the
leader proposing a new block (Pre-prepare); continues as other
validators verify and broadcast their acceptance (Prepare); and
concludes with the confirmation of the block (Commit). To
advance between phases and finalize the block, an agreement from
at least two-thirds of the network is required.

3.2 Raft

The Raft algorithm, a Crash Fault Tolerant (CFT) type, was
designed for simple implementation, using a leader-follower model
to coordinate log replication [7, 12, 23]). Its operation is based on
the election of a leader through voting, who maintains authority by
sending periodic heartbeats to follower nodes; the leader’s failure
triggers a new election. This leader is solely responsible for
replicating the command logs that update the followers’ state
machines, overwriting divergent logs to maintain consistency.

3.3 HotStuff

The HotStuft algorithm [28] represents an evolution of BFT type
consensus mechanisms, designed to optimize communication with
linear message complexity and without the need for full
interconnection between nodes. Its consensus mechanism operates
in three voting phases. In the Prepare phase, the leader proposes a
new block, and validators respond with votes. Next, in the Pre-
commit phase, the leader aggregates the votes into a Quorum
Certificate (QC) upon receiving (n — f) messages, where n is the
total number of validators and f'is the maximum number of faults
tolerated. This QC is then broadcast to the network. Finally, in the
Commit phase, validators cast their final votes, which are again
aggregated by the leader into a new QC to finalize the consensus.

4. Performance Evaluation

4.1 Simulation Setup
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The experiments are modeled in the NS-3 environment, an open-
source network simulator that is widely adopted by the academic
community and allows for the modeling of various protocols and
algorithms. In the context of CBDCs, it enables the simulation of
Blockchain networks with different consensus algorithms[2, 14].
The algorithms were implemented using C++, and the simulations
were conducted by adapting a pre-existing simulator. The
implementation code for each algorithm is available on GitHub.

4.2 Experimental Setup

Table 1. Parameters Used in the Simulation

Parameters Values
Nodes (n) 8, 16,32, 64
Size (bytes) 256, 1024

Latency (ms) 10, 100

The performance metric evaluated in the experiments is the
consensus time, i.e., the average time required for the network
nodes to validate transactions. The experiments were conducted by
varying three independent variables: the number of participating
nodes in the network (), the size of the transmitted messages (in
bytes), and the communication latency between nodes (in ms), as
shown in Table 1.

High-performance networks were simulated with a latency of
10ms, while scenarios more representative of real-world
implementations were modeled with a latency of 100ms [9]. The
selected message sizes of 256 bytes and 1024 bytes [8, 13]
represent approximations of transactions in public Blockchain and
CBDC networks, respectively. The simulations were conducted on
network topologies with 8, 16, 32, and 64 nodes. The selection of
these values is based on the permissioned architecture of CBDC
networks, which are generally composed of a restricted set of
validator nodes, such as the Central Bank and government-
designated financial institutions [17].

Table 2. Computational Environment Used in the Simulation

Resource Specification

Ubuntu 24.04.1 LTS

Operating System

Processor Intel® Core™ i9-11900H
Memory 12GB DDR4 3200MHz
Simulator NS-3.32

To ensure the statistical validity and reliability of the results, the
average values reported in the experiments are obtained from 30
executions (runs). This approach allowed for the analysis of the
data with a 95% confidence level, minimizing the impact of random
fluctuations and providing a robust basis for the inferences. Finally,
the computational resources used to perform the CBDC network
simulation are detailed in Table 2.

4.3 Network Topology

NS-3 offers complete flexibility in the topological configuration of
the network, allowing for arbitrary connections between system
nodes. In the simulations performed, a fully interconnected network

topology was implemented to ensure a consistent comparison
between the algorithms. This configuration was adopted as it is a
fundamental requirement of the pBFT algorithm, although it may
potentially impact the performance of the other analyzed
algorithms. In this topology, considering n nodes, the total number
of connections is determined by the combination C(n, 2),
mathematically expressed as:

(n—-1)
2

Number of connections = n-

Thus, for the values of » indicated in Table 2, a total of 28, 120,
496, and 2016 connections are obtained for 8, 16, 32, and 64 nodes,
respectively.

4.4 Analysis of Results

This subsection presents the experimental results obtained through
simulations conducted in the NS-3 environment, focusing on the
comparative analysis of the pBFT, Raft, and HotStuff consensus
algorithms. The performance metric, as previously mentioned, is
the consensus time, i.e., the time required to establish consensus
among the participating network nodes. The data are represented
on a logarithmic scale to provide an appropriate visualization of the
variations observed in the experimental results.

4.4.1 Network with 10ms Latency
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Figure 2: Consensus time for 10ms latency and 1024-byte
messages

In the scenario with 256-byte messages, depicted in Figure 1, the
RAFT protocol exhibits the best performance in configurations of
8, 16, and 32 nodes, with the lowest response times (24ms, 55ms,
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and 184ms, respectively). The HotStuff protocol, although starting
with performance comparable to pBFT at 8 nodes (both at 50ms),
shows the most pronounced performance degradation as the
network scales, reaching the highest value at 64 nodes (3065ms).
In contrast, pBFT, despite being surpassed by RAFT in smaller
networks, demonstrates better scalability, taking the lead as the
most efficient protocol in the 64-node configuration (491ms).

In the configuration involving 1024-byte messages, detailed in
Figure 2, the RAFT protocol shows consistent superiority,
delivering the best performance across all tested node
configurations (8, 16, 32, and 64). pBFT, on the other hand, starts
as the least efficient protocol in an 8-node network and, although it
scales better than HotStuff, it remains consistently behind RAFT.
The HotStuff algorithm again demonstrates the poorest scalability,
starting with intermediate performance at 8 nodes but recording the
longest response times in scenarios with a higher number of nodes.

In conclusion, Raft proved to be the most efficient protocol, a
direct consequence of its leader-based model with linear
communication (O(n)), which remained robust to increases in both
node count and load. pBFT, in turn, showed mixed behavior; its
high quadratic communication complexity (O(n”2)), required for
Byzantine fault tolerance, explains its loss of efficiency as the
network and message sizes grew. Finally, HotStuff exhibited the
lowest scalability, indicating that despite its theoretically linear
architecture, its performance was severely compromised as the
network grew; it is theorized that this behavior is due to the
computational cost of validating Quorum Certificate.

4.4.2 Network with 100ms Latency
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Figure 4: Consensus time for 100ms latency and 1024-byte
messages

In the scenario with 100ms latency and 256-byte messages,
depicted in Figure 3, the pBFT protocol demonstrates notable
performance superiority across all node configurations (8, 16, 32,
and 64). Its performance scales more efficiently compared to the
other algorithms, maintaining the lowest response times. The Raft
and HotStuff protocols show similar initial performance at 8 nodes,
but both exhibit a significantly more pronounced degradation as the
network grows, becoming slower than pBFT.

In the configuration with larger, 1024-byte messages, shown in
Figure 4 with the same 100ms latency, HotStuff starts with the best
performance in an 8-node network, but its scalability proves
inferior, ending as the slowest protocol at 64 nodes. Raft, in turn,
takes the lead in 16 and 64-node networks. pBFT, despite a less
impressive start, improves its performance to tie with Raft in the
32-node configuration but is once again surpassed in the larger
network.

Compared to the 10ms latency scenario, the pBFT algorithm
demonstrated consistent performance, remaining efficient under
both 10ms and 100ms latencies for both data packet sizes, with the
exception noted in the 64-node topology with 1024-byte messages.
In contrast, the Raft protocol proved to be highly sensitive to the
increase in latency, suffering from performance degradation.
HotStuff, meanwhile, exhibited the lowest scalability, showing the
most pronounced performance deterioration among the evaluated
algorithms in response to increased latency, regardless of the
network configuration.

4.5 Critical evaluation

From the analysis of the numerical results presented individually
in the previous subsections, the following general findings can be
made.

a) The performance of the Raft algorithm is characterized as
follows. In low-latency scenarios, it proved to be the most efficient
and robust protocol, consistently delivering the best performance
due to its linear communication model. In high-latency scenarios,
its performance drops significantly, revealing its high sensitivity to
increased network latency. Therefore, the Raft algorithm is the
ideal choice for networks with guaranteed low latency, but its
performance is considerably hindered in less ideal network
environments.

b) The performance of the pBFT algorithm is characterized as
follows. In low-latency scenarios, its behavior is mixed, often being
surpassed by Raft in smaller networks but demonstrating better
scalability and potentially taking the lead in larger network
configurations. In high-latency scenarios, it demonstrates
consistency, which is the most efficient algorithm in most tested
configurations. Therefore, the pBFT algorithm stands out for its
robustness and consistent performance, being particularly effective
and superior to the others in high-latency environments.

¢) The performance of the HotStuff algorithm is characterized as
follows. In low-latency scenarios, although its initial performance
may be comparable, it exhibits the poorest scalability and the most
pronounced performance degradation as the network grows. In
high-latency scenarios, this trend intensifies, and despite good
initial performance in very small networks, its scalability proves
inferior, ending as the slowest protocol in larger configurations.
Therefore, the HotStuff algorithm demonstrated the lowest
scalability in the evaluated scenarios, with its performance being
severely compromised by increases in network size and latency.
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In summary, considering the previous discussion, it is concluded
that in the context of CBDCs where low latency is expected, the
Raft algorithm is the most suitable choice.

5. Final Conclusions and Future Work

This work conducted a comparative analysis of three consensus
algorithms: pBFT, HotStuff, and Raft, evaluating their applicability
for the implementation of Blockchain-based CBDCs. The analysis
methodology involved simulations in the NS-3 environment to
measure the consensus time under different network
configurations, considering message size, latency, and the number
of nodes. In general, the experimental results showed that the Raft
algorithm is the most efficient and scalable for implementing
CBDCs, followed by pBFT and HotStuff. Furthermore, it was also
noted that pBFT’s performance was significantly affected by
message size, whereas HotStuff was minimally impacted.

As future work, we suggest the following directions: (i) analyzing
the impact of the connection topology between network nodes on
efficiency, scalability, and systemic security; (ii) comparing other
consensus algorithms, as specified in Section 3; and (iii) creating
new algorithms to optimize the performance of existing ones.
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