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ABSTRACT 

The choice of the consensus mechanism in the implementation of a 

Central Bank Digital Currency (CBDC) with Blockchain 

technology is critical, as it impacts the efficiency, scalability, and 

security of the system. In this context, this work analyzes three 

consensus algorithms: Practical Byzantine Fault Tolerance (pBFT), 

HotStuff, and Raft. Simulations are performed in the   NS-3 

environment to measure consensus times in networks with different 

numbers of nodes, message sizes, and latencies. The results show 

the superiority of the Raft algorithm, as it is the most scalable and 

optimizes consensus time by up to 134% and 277% compared to 

the pBFT and HotStuff algorithms, respectively. The paper 

concludes with a discussion of findings and suggestions for future 

work. 

CCS Concepts 

Computer systems organization → Distributed ledgers; Consensus 

mechanisms; Applied computing → Financial applications; 

Software and its engineering → Performance prediction and 

evaluation. 

Keywords 

Central Bank Digital Currency (CBDC); Distributed Ledger 

Technology (DLT); Consensus Algorithms; Blockchain; 

Performance Analysis. 

1. INTRODUCTION 
 Central Bank Digital Currencies (CBDCs) are digital 

representations of fiat money issued and regulated by monetary 

authorities, with projects underway in Brazil and other     countries 

[22]. Implemented on Distributed Ledger Technologies (DLT) such 

as Blockchain [27], CBDCs aim to enhance the security and 

transparency of the financial system through asset tokenization [4]. 

DLT ensures data immutability [15] in private, permissioned 

networks, which differentiates them from public cryptocurrencies 

and guarantees regulatory oversight by the central bank [30]. 

 This centralized management allows for greater auditability and 

the application of monetary policies [26], but integration with 

existing financial systems critically depends on the chosen 

Blockchain platform (e.g., Hyperledger, Corda) [3, 25]. Within 

these platforms, the choice of consensus algorithm is a decisive 

factor, as it directly impacts the scalability, efficiency, and security 

of the entire operation[19, 21]. 

 Therefore, this paper compares three consensus algorithms as 

candidates for application in CBDCs: pBFT (Practical Byzantine 

Fault Tolerance) and HotStuff, which are Byzantine fault-tolerant, 

and Raft, which is crash fault-tolerant. To this end, following a 

literature review, simulations are conducted in the NS-3 

environment to measure the consensus time under different 

network conditions (number of nodes, message size, and latency). 

The analysis of variants such as IBFT (Istanbul Byzantine Fault 

Tolerance) [20] and QBFT (Quorum Byzantine Fault Tolerance) 

[24], as well as an in-depth study of systemic security, are left as 

future work. The contribution of this research is the evaluation of 

the time to reach consensus (efficiency) and the impact of the 

number of nodes (scalability) on these algorithms, thereby 

advancing the body of knowledge for CBDC development. 

 The remainder of this paper is organized as follows. Related work 

is discussed in Section 2. Section 3 reviews the consensus 

algorithms analyzed in this research. Section 4 compares these 

consensus algorithms, including numerical results and their 

corresponding analyses. Finally, Section 5 presents the conclusions 

and suggestions for future work. 

2. RELATED WORK 
 Subsection 2.1 presents three key papers that address consensus 

algorithms applied to the implementation of CBDC systems, while 

Subsection 2.2 discusses five papers comparing consensus 

algorithms, highlighting potential candidates also suitable for use 

in Blockchain-based CBDC implementations. 

2.1 Consensus Algorithms applied to CBDCs 
 In [10] conduct an analysis of the components of a CBDC, 

presenting the fundamental elements of its structure: types of DLT, 

smart contracts, virtual machines, and consensus algorithms. 

Specifically regarding consensus algorithms, the suitability of the 

following for CBDC applications is discussed: PoW (Proof of 

Work), PoS (Proof of Stake), DAG (Directed Acyclic Graph), 

DPoS (Delegated Proof of Stake), PoA (Proof of Authority), pBFT, 

and HotStuff. The study concludes that the pBFT and HotStuff 

algorithms, both from the BFT category, are the most appropriate 

for CBDCs. This recommendation is based on the ability of these 

algorithms to achieve consensus even in the presence of faults in 

processing nodes, a characteristic not found in the other evaluated 

algorithms, making them robust and reliable. 

 Focusing on security, [5] performs a literature review on available 

offline payment solutions for CBDCs. Their study establishes 

essential criteria for network security, such as double-spending 

prevention, unforgeability, non-repudiation, and verifiability. 

Based on these parameters, the authors conclude that PoW type 

algorithms are not suitable for such an application. However, the 

study does not indicate which algorithms might be more 

appropriate and points to a lack of clear technical guidelines on 

which algorithms would be most suitable. 

 A different perspective is offered by [16], who investigate the 

environmental impact and energy consumption of CBDCs. Their 
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study compares the use of CBDCs with traditional payment 

methods, as well as analyzing Blockchain-based payment systems. 

The comparison indicates that current financial methods have the 

lowest energy consumption, followed by the Raft algorithm, then 

the PoA and pBFT algorithms, and lastly, PoW. Furthermore, the 

authors highlight that the choice of consensus algorithm in a system 

that adopts CBDCs has a significant impact not only on energy 

consumption but also on the overall functioning of the system. For 

example, the cost associated with the pBFT consensus algorithm 

can increase exponentially with the number of participants, while 

at the same time, limiting the number of participants can 

compromise the system’s security. 

2.2 Comparison of Consensus Algorithms 
 [29] compares the PoW, PoS, DPoS, pBFT, and Ripple consensus 

algorithms through simulations. Their evaluation focuses on 

requirements such as fault tolerance, energy efficiency, and 

scalability, and also identifies the type of network to which each 

algorithm is applied. Ripple and pBFT are applicable to 

permissioned networks, while the others are used in public 

networks. PoW exhibits the highest scalability, followed by PoS, 

DPoS, pBFT, and Ripple. Regarding energy efficiency, Ripple and 

pBFT have the best performance, followed by DPoS, PoS, and 

PoW. As for fault tolerance, PoW, PoS, and DPoS are the most 

robust, followed by pBFT and Ripple.  

 A performance comparison between IBFT, Clique, PoW, and Raft 

is presented by [1]. The algorithms are compared in terms of 

latency, throughput, and failure rate using a system called UBETA 

for P2P (Peer-to-Peer) energy trading. The IBFT algorithm has the 

lowest latency in most test cases, followed by the Raft, PoW, and 

Clique algorithms. Regarding throughput, IBFT and Raft showed 

similar values, followed by PoW and Clique. In addition, the IBFT 

algorithm exhibits the lowest failure rate as the number of nodes 

increases, followed by Clique, PoW, and Raft.  

 The work by [18] evaluates the IBFT, QBFT, Raft, and Clique 

algorithms on the GoQuorum platform using the Hyperledger 

Caliper tool. The analysis included transactions per second, 

transaction latency, and RAM consumption across both private and 

public networks with varying numbers of nodes. In all tests, the 

Raft algorithm was the best performer. Following Raft, the IBFT 

and QBFT algorithms performed similarly, while the Clique 

algorithm had the worst performance among them across all 

metrics.  

 Focusing on the Hyperledger Besu platform, [6] analyzes the 

Clique, IBFT 2.0, and QBFT consensus algorithms. The analyzed 

metrics include transaction rates, latency, resource consumption, 

and scalability. The results indicate that Clique and QBFT exhibit 

similar throughput rates, with IBFT 2.0 having the lowest rate 

among them. The same applies to latency: Clique and QBFT show 

similar results, while IBFT 2.0 has the highest latency. Regarding 

scalability, QBFT demonstrates the greatest scalability, with IBFT 

2.0 and Clique following.  

 Using the NS-3 simulator, [11] evaluates Paxos, Raft, and pBFT 

by varying the number of nodes, message size, and delays. Their 

findings demonstrate that pBFT is superior in both robustness and 

consensus speed, consistently outperforming Raft and Paxos under 

the tested conditions.  

 It can be concluded that PoW and PoS type algorithms are not 

suitable for CBDCs, as they do not feature a structure centralized 

under a single entity. In contrast, BFT based algorithms, such as 

pBFT and HotStuff, are more indicated for CBDCs, offering 

greater efficiency and scalability. Although the Ripple and Raft 

algorithms have also shown good performance, Ripple’s 

proprietary nature limits its adoption in financial systems. Hence, 

the contribution of this research is, specifically, to perform a novel 

comparison of potential candidate algorithms (i.e., pBFT, HotStuff, 

and Raft) for use in Blockchain based CBDCs. It should be noted 

that the available literature on the topic of this research is still 

incipient and therefore characterized by a limited number of works. 

3. EVALUATED ALGORITHMS 
 This section provides an overview of the following three 

algorithms: pBFT, HotStuff, and Raft. These three algorithms were 

chosen for analysis in this research because, according to the 

literature (see Section 2), they exhibit good overall performance 

and lack the more critical limitations found in other algorithms, 

such as the requirement for complete decentralization. 

Furthermore, this work aims to complement previous studies by 

specifically comparing pBFT, HotStuff, and Raft in simulations 

within the context of CBDCs, thereby identifying a gap in scientific 

literature. 

3.1 pBFT 
 The pBFT algorithm is one of the most traditional consensus 

mechanisms, capable of tolerating up to f faults in a system 

composed of n = 3f + 1 replicas and requiring a fully interconnected 

network. The process operates in three phases: it begins with the 

leader proposing a new block (Pre-prepare); continues as other 

validators verify and broadcast their acceptance (Prepare); and 

concludes with the confirmation of the block (Commit). To 

advance between phases and finalize the block, an agreement from 

at least two-thirds of the network is required. 

3.2 Raft 
 The Raft algorithm, a Crash Fault Tolerant (CFT) type, was 

designed for simple implementation, using a leader-follower model 

to coordinate log replication [7, 12, 23]). Its operation is based on 

the election of a leader through voting, who maintains authority by 

sending periodic heartbeats to follower nodes; the leader’s failure 

triggers a new election. This leader is solely responsible for 

replicating the command logs that update the followers’ state 

machines, overwriting divergent logs to maintain consistency. 

3.3 HotStuff 
  The HotStuff algorithm [28] represents an evolution of BFT type 

consensus mechanisms, designed to optimize communication with 

linear message complexity and without the need for full 

interconnection between nodes. Its consensus mechanism operates 

in three voting phases. In the Prepare phase, the leader proposes a 

new block, and validators respond with votes. Next, in the Pre-

commit phase, the leader aggregates the votes into a Quorum 

Certificate (QC) upon receiving (n – f) messages, where n is the 

total number of validators and f is the maximum number of faults 

tolerated. This QC is then broadcast to the network. Finally, in the 

Commit phase, validators cast their final votes, which are again 

aggregated by the leader into a new QC to finalize the consensus. 

 

4. Performance Evaluation 

4.1 Simulation Setup 
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 The experiments are modeled in the NS-3 environment, an open-

source network simulator that is widely adopted by the academic 

community and allows for the modeling of various protocols and 

algorithms. In the context of CBDCs, it enables the simulation of 

Blockchain networks with different consensus algorithms[2, 14]. 

The algorithms were implemented using C++, and the simulations 

were conducted by adapting a pre-existing simulator. The 

implementation code for each algorithm is available on GitHub. 

 

4.2 Experimental Setup 
Table 1. Parameters Used in the Simulation 

Parameters Values 

Nodes (n) 8, 16, 32, 64 

Size (bytes) 256, 1024 

Latency (ms) 10, 100 

 

 The performance metric evaluated in the experiments is the 

consensus time, i.e., the average time required for the network 

nodes to validate transactions. The experiments were conducted by 

varying three independent variables: the number of participating 

nodes in the network (n), the size of the transmitted messages (in 

bytes), and the communication latency between nodes (in ms), as 

shown in Table 1. 

 High-performance networks were simulated with a latency of     

10ms, while scenarios more representative of real-world 

implementations were modeled with a latency of 100ms [9]. The 

selected message sizes of 256 bytes and 1024 bytes [8, 13] 

represent approximations of transactions in public Blockchain and 

CBDC networks, respectively. The simulations were conducted on 

network topologies with 8, 16, 32, and 64 nodes. The selection of 

these values is based on the permissioned architecture of CBDC 

networks, which are generally composed of a restricted set of 

validator nodes, such as the Central Bank and government-

designated financial institutions [17]. 

Table 2. Computational Environment Used in the Simulation 

Resource Specification 

Operating System Ubuntu 24.04.1 LTS 

Processor Intel® Core™ i9-11900H 

Memory 12GB DDR4 3200MHz 

Simulator NS-3.32 

 

To ensure the statistical validity and reliability of the results, the 

average values reported in the experiments are obtained from 30 

executions (runs). This approach allowed for the analysis of the 

data with a 95% confidence level, minimizing the impact of random 

fluctuations and providing a robust basis for the inferences. Finally, 

the computational resources used to perform the CBDC network 

simulation are detailed in Table 2. 

 

4.3 Network Topology 
NS-3 offers complete flexibility in the topological configuration of 

the network, allowing for arbitrary connections between system 

nodes. In the simulations performed, a fully interconnected network 

topology was implemented to ensure a consistent comparison 

between the algorithms. This configuration was adopted as it is a 

fundamental requirement of the pBFT algorithm, although it may 

potentially impact the performance of the other analyzed 

algorithms. In this topology, considering n nodes, the total number 

of connections is determined by the combination C(n, 2), 

mathematically expressed as: 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠  =  𝑛 ⋅
(𝑛 − 1)

2
 

 

Thus, for the values of n indicated in Table 2, a total of 28, 120, 

496, and 2016 connections are obtained for 8, 16, 32, and 64 nodes, 

respectively. 

 

4.4 Analysis of Results 
This subsection presents the experimental results obtained through 

simulations conducted in the NS-3 environment, focusing on the 

comparative analysis of the pBFT, Raft, and HotStuff consensus 

algorithms. The performance metric, as previously mentioned, is 

the consensus time, i.e., the time required to establish consensus 

among the participating network nodes. The data are represented 

on a logarithmic scale to provide an appropriate visualization of the 

variations observed in the experimental results. 

4.4.1 Network with 10ms Latency 

Figure 1: Consensus time for 10ms latency and 256-byte 

messages 

 

Figure 2: Consensus time for 10ms latency and 1024-byte 

messages 

 

 In the scenario with 256-byte messages, depicted in Figure 1, the 

RAFT protocol exhibits the best performance in configurations of 

8, 16, and 32 nodes, with the lowest response times (24ms, 55ms, 
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and 184ms, respectively). The HotStuff protocol, although starting 

with performance comparable to pBFT at 8 nodes (both at 50ms), 

shows the most pronounced performance degradation as the 

network scales, reaching the highest value at 64 nodes (3065ms). 

In contrast, pBFT, despite being surpassed by RAFT in smaller 

networks, demonstrates better scalability, taking the lead as the 

most efficient protocol in the 64-node configuration (491ms).  

 In the configuration involving 1024-byte messages, detailed in 

Figure 2, the RAFT protocol shows consistent superiority, 

delivering the best performance across all tested node 

configurations (8, 16, 32, and 64). pBFT, on the other hand, starts 

as the least efficient protocol in an 8-node network and, although it 

scales better than HotStuff, it remains consistently behind RAFT. 

The HotStuff algorithm again demonstrates the poorest scalability, 

starting with intermediate performance at 8 nodes but recording the 

longest response times in scenarios with a higher number of nodes.  

 In conclusion, Raft proved to be the most efficient protocol, a 

direct consequence of its leader-based model with linear 

communication (O(n)), which remained robust to increases in both 

node count and load. pBFT, in turn, showed mixed behavior; its 

high quadratic communication complexity (O(n^2)), required for 

Byzantine fault tolerance, explains its loss of efficiency as the 

network and message sizes grew. Finally, HotStuff exhibited the 

lowest scalability, indicating that despite its theoretically linear 

architecture, its performance was severely compromised as the 

network grew; it is theorized that this behavior is due to the 

computational cost of validating Quorum Certificate.  

4.4.2 Network with 100ms Latency 

Figure 3: Consensus time for 100ms latency and 256-byte 

messages 

 

Figure 4: Consensus time for 100ms latency and 1024-byte 

messages 

 

 In the scenario with 100ms latency and 256-byte messages, 

depicted in Figure 3, the pBFT protocol demonstrates notable 

performance superiority across all node configurations (8, 16, 32, 

and 64). Its performance scales more efficiently compared to the 

other algorithms, maintaining the lowest response times. The Raft 

and HotStuff protocols show similar initial performance at 8 nodes, 

but both exhibit a significantly more pronounced degradation as the 

network grows, becoming slower than pBFT. 

 In the configuration with larger, 1024-byte messages, shown in 

Figure 4 with the same 100ms latency, HotStuff starts with the best 

performance in an 8-node network, but its scalability proves 

inferior, ending as the slowest protocol at 64 nodes. Raft, in turn, 

takes the lead in 16 and 64-node networks. pBFT, despite a less 

impressive start, improves its performance to tie with Raft in the 

32-node configuration but is once again surpassed in the larger 

network.  

 Compared to the 10ms latency scenario, the pBFT algorithm 

demonstrated consistent performance, remaining efficient under 

both 10ms and 100ms latencies for both data packet sizes, with the 

exception noted in the 64-node topology with 1024-byte messages. 

In contrast, the Raft protocol proved to be highly sensitive to the 

increase in latency, suffering from performance degradation. 

HotStuff, meanwhile, exhibited the lowest scalability, showing the 

most pronounced performance deterioration among the evaluated 

algorithms in response to increased latency, regardless of the 

network configuration. 

 

4.5 Critical evaluation 
 From the analysis of the numerical results presented individually 

in the previous subsections, the following general findings can be 

made.  

 a) The performance of the Raft algorithm is characterized as 

follows. In low-latency scenarios, it proved to be the most efficient 

and robust protocol, consistently delivering the best performance 

due to its linear communication model. In high-latency scenarios, 

its performance drops significantly, revealing its high sensitivity to 

increased network latency. Therefore, the Raft algorithm is the 

ideal choice for networks with guaranteed low latency, but its 

performance is considerably hindered in less ideal network 

environments.  

 b) The performance of the pBFT algorithm is characterized as 

follows. In low-latency scenarios, its behavior is mixed, often being 

surpassed by Raft in smaller networks but demonstrating better 

scalability and potentially taking the lead in larger network 

configurations. In high-latency scenarios, it demonstrates 

consistency, which is the most efficient algorithm in most tested 

configurations. Therefore, the pBFT algorithm stands out for its 

robustness and consistent performance, being particularly effective 

and superior to the others in high-latency environments. 

 c) The performance of the HotStuff algorithm is characterized as 

follows. In low-latency scenarios, although its initial performance 

may be comparable, it exhibits the poorest scalability and the most 

pronounced performance degradation as the network grows. In 

high-latency scenarios, this trend intensifies, and despite good 

initial performance in very small networks, its scalability proves 

inferior, ending as the slowest protocol in larger configurations. 

Therefore, the HotStuff algorithm demonstrated the lowest 

scalability in the evaluated scenarios, with its performance being 

severely compromised by increases in network size and latency.  



31 

Revista de Sistemas e Computação, Salvador, v. 15, n. 2, p. 27-31, mai/ago 2025 

https://revistas.unifacs.br/index.php/rsc 

 In summary, considering the previous discussion, it is concluded 

that in the context of CBDCs where low latency is expected, the 

Raft algorithm is the most suitable choice. 

5. Final Conclusions and Future Work 

 This work conducted a comparative analysis of three consensus 

algorithms: pBFT, HotStuff, and Raft, evaluating their applicability 

for the implementation of Blockchain-based CBDCs. The analysis 

methodology involved simulations in the NS-3 environment to 

measure the consensus time under different network 

configurations, considering message size, latency, and the number 

of nodes. In general, the experimental results showed that the Raft 

algorithm is the most efficient and scalable for implementing 

CBDCs, followed by pBFT and HotStuff. Furthermore, it was also 

noted that pBFT’s performance was significantly affected by 

message size, whereas HotStuff was minimally impacted.  

 As future work, we suggest the following directions: (i) analyzing 

the impact of the connection topology between network nodes on 

efficiency, scalability, and systemic security; (ii) comparing other 

consensus algorithms, as specified in Section 3; and (iii) creating 

new algorithms to optimize the performance of existing ones.  
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